835 research outputs found

    Application of novel techniques for interferogram analysis to laser-plasma femtosecond probing

    Get PDF
    Recently, two novel techniques for the extraction of the phase-shift map (Tomassini {\it et.~al.}, Applied Optics {\bf 40} 35 (2001)) and the electronic density map estimation (Tomassini P. and Giulietti A., Optics Communication {\bf 199}, pp 143-148 (2001)) have been proposed. In this paper we apply both methods to a sample laser-plasma interferogram obtained with femtoseconds probe pulse, in an experimental setup devoted to laser particle acceleration studies.Comment: Submitted to Laser and Particle Beam

    A Generalization of Abel Inversion to non axisymmetric density distribution

    Full text link
    Abel Inversion is currently used in laser-plasma studies in order to estimate the electronic density nen_e from the phase-shift map δϕ\delta \phi obtained via interferometry. The main limitation of the Abel method is due to the assumption of axial symmetry of the electronic density, which is often hardly fulfilled. In this paper we present an improvement to the Abel inversion technique in which the axial symmetry condition is relaxed by means of a truncated Legendre Polinomial expansion in the azimutal angle. With the help of simulated interferograms, we will show that the generalized Abel inversion generates accurate densities maps when applied to non axisymmetric density sources

    Quantitative global-local mixing for accessible skew products

    Full text link
    We study global-local mixing for accessible skew products with a mixing base. For a dense set of almost periodic global observables, we prove rapid mixing; and for a dense set of global observables vanishing at infinity, we prove polynomial mixing. More generally, we relate the speed of mixing to the "low frequency behaviour" of the spectral measure associated to our global observables. Our strategy relies on a careful choice of the spaces of observables and on the study of a family of twisted transfer operators

    Experimental study of picosecond laser plasma formation in thin foils

    Get PDF
    A high performance, fully controlled picosecond laser system has been designed and built with the aid of a numerical code capable of simulating the temporal behavior of the laser system, including each active and passive component. The laser performance was characterized with an optical streak camera, equivalent plane monitor, and calorimeter measurements. The laser pulse was focused on 150-nm thick foils to investigate plasma formation and the related transmittivity of the laser light. The experimental data are in very good agreement with the predictions of a simple, 2D analytical model that takes into account the actual shot-to-shot features of the laser pulse. The temporal profile of the pulse and the intensity distribution in the focal spot were found to play a key role in determining the transmission properties of the laser-irradiated foil. This work may be relevant to a wide class of laser exploded foil plasma experiments

    Expanding Semiflows on Branched Surfaces and One-Parameter Semigroups of Operators

    Get PDF
    We consider expanding semiflows on branched surfaces. The family of transfer operators associated to the semiflow is a one-parameter semigroup of operators. The transfer operators may also be viewed as an operator-valued function of time and so, in the appropriate norm, we may consider the vector-valued Laplace transform of this function. We obtain a spectral result on these operators and relate this to the spectrum of the generator of this semigroup. Issues of strong continuity of the semigroup are avoided. The main result is the improvement to the machinery associated with studying semiflows as one-parameter semigroups of operators and the study of the smoothness properties of semiflows defined on branched manifolds, without encoding as a suspension semiflow

    Ray-tracing simulations of a bent crystal X-ray optics for imaging using laser-plasma X-ray sources

    Get PDF
    Ray-tracing simulations of an optical X-ray system based on a spherically bent crystal operating in Bragg configuration for monochromatic projection imaging of thin samples are presented, obtained using a code developed for that purpose. The code is particularly suited for characterizing experimental arrangements routinely used with laser-produced plasma X-ray sources. In particular, the spatial resolution of the imaging system was investigated and a careful study of the complex pattern of the X-ray backlighting beam was performed

    Acceleration with Self-Injection for an All-Optical Radiation Source at LNF

    Full text link
    We discuss a new compact gamma-ray source aiming at high spectral density, up to two orders of magnitude higher than currently available bremsstrahlung sources, and conceptually similar to Compton Sources based on conventional linear accelerators. This new source exploits electron bunches from laser-driven electron acceleration in the so-called self-injection scheme and uses a counter-propagating laser pulse to obtain X and gamma-ray emission via Thomson/Compton scattering. The proposed experimental configuration inherently provides a unique test-bed for studies of fundamental open issues of electrodynamics. In view of this, a preliminary discussion of recent results on self-injection with the FLAME laser is also given.Comment: 8 pages, 10 figures, 44 references - Channeling 2012 conferenc

    Space- and time-resolved observation of extreme laser frequency upshifting during ultrafast-ionization

    Get PDF
    A 65-fs, 800-nm, 2-TW laser pulse propagating through a nitrogen gas jet has been experimentally studied by 90 Thomson scattering. Time-integrated spectra of scattered light show unprecedented broadening towards the blue which exceeds 300 nm. Images of the scattering region provide for the first time a space- and time-resolved description of the process leading quite regularly to such a large upshift. The mean shifting rate was as high as dk/dt3A ĚŠ/fs, never observed before. Interferometry shows that it occurs after partial laser defocusing. Numerical simulations prove that such an upshift is consistent with a laser-gas late interaction, when laser intensity has decreased well below relativistic values (a0 1) and ionization process involves most of the laser pulse. This kind of interaction makes spectral tuning of ultrashort intense laser pulses possible in a large spectral range. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818602
    • …
    corecore