9 research outputs found

    Bimetallic Nickel–Cobalt Hexacarbido Carbonyl Clusters [H<sub>6–<i>n</i></sub>Ni<sub>22</sub>Co<sub>6</sub>C<sub>6</sub>(CO)<sub>36</sub>]<sup><i>n</i>−</sup> (<i>n</i> = 3–6) Possessing Polyhydride Nature and Their Base-Induced Degradation to the Monoacetylide [Ni<sub>9</sub>CoC<sub>2</sub>(CO)<sub>16–<i>x</i></sub>]<sup>3–</sup> (<i>x</i> = 0, 1)

    No full text
    The reaction of [Ni<sub>10</sub>C<sub>2</sub>(CO)<sub>16</sub>]<sup>2–</sup> with Co<sub>3</sub>(μ<sub>3</sub>-CCl)­(CO)<sub>9</sub> results in the new bimetallic Ni–Co hexacarbido carbonyl clusters [H<sub>6–<i>n</i></sub>Ni<sub>22</sub>Co<sub>6</sub>C<sub>6</sub>(CO)<sub>36</sub>]<sup><i>n</i>−</sup> (<i>n</i> = 3–6), which possess polyhydride nature and can be interconverted by means of acid–base reactions. The tetra-anion [H<sub>2</sub>Ni<sub>22</sub>Co<sub>6</sub>C<sub>6</sub>(CO)<sub>36</sub>]<sup>4–</sup> and the hexa-anion [Ni<sub>22</sub>Co<sub>6</sub>C<sub>6</sub>(CO)<sub>36</sub>]<sup>6–</sup> have been isolated in a crystalline state and structurally characterized via X-ray crystallography. The six carbide atoms are lodged into Ni<sub>7</sub>CoC square antiprismatic cages. Addition of strong bases to [Ni<sub>22</sub>Co<sub>6</sub>C<sub>6</sub>(CO)<sub>36</sub>]<sup>6–</sup> affords mixtures of the monoacetylides [Ni<sub>9</sub>CoC<sub>2</sub>(CO)<sub>16</sub>]<sup>3–</sup> and [Ni<sub>9</sub>CoC<sub>2</sub>(CO)<sub>15</sub>]<sup>3–</sup>, which have been cocrystallized as [NEt<sub>4</sub>]<sub>3</sub>[Ni<sub>9</sub>CoC<sub>2</sub>(CO)<sub>16–<i>x</i></sub>] (<i>x</i> = 0.58–0.84) salts, displaying tightly bonded interstitial C<sub>2</sub> units

    Tetrahedral [H<sub><i>n</i></sub>Pt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub>]<sup><i>n</i>+</sup> (<i>n</i> = 1, 2; P<sup>∧</sup>P = CH<sub>2</sub>C(PPh<sub>2</sub>)<sub>2</sub>) Cationic Mono- and Dihydrido Carbonyl Clusters Obtained by Protonation of the Neutral Pt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub>

    No full text
    The reaction of [Pt<sub>12</sub>(CO)<sub>24</sub>]<sup>2–</sup> with CH<sub>2</sub>C­(PPh<sub>2</sub>)<sub>2</sub> (P<sup>∧</sup>P) results in the neutral tetrahedral cluster Pt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub>. This reacts with strong acids such as HBF<sub>4</sub> to afford, first, the [HPt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub>]<sup>+</sup> monohydride monocation and, then, the [H<sub>2</sub>Pt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub>]<sup>2+</sup> dihydride dication. The three clusters have been fully characterized in solution by means of IR and <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy. Both Pt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub> and [H<sub>2</sub>Pt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub>]<sup>2+</sup> are static in solution, whereas [HPt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub>]<sup>+</sup> displays a fluxional behavior of the unique hydride ligand. In addition, the molecular structures of all these clusters have been fully determined in the solid state via single-crystal X-ray diffraction, showing that all of them possess the same 56-electron tetrahedral Pt<sub>4</sub>(CO)<sub>4</sub>(P<sup>∧</sup>P)<sub>2</sub> core to which the hydride ligands are added stepwise

    PPh<sub>3</sub>‑Derivatives of [Pt<sub>3<i>n</i></sub>(CO)<sub>6<i>n</i></sub>]<sup>2–</sup> (<i>n</i> = 2–6) Chini’s Clusters: Syntheses, Structures, and <sup>31</sup>P NMR Studies

    No full text
    The reaction of the [Pt<sub>3<i>n</i></sub>(CO)<sub>6<i>n</i></sub>]<sup>2–</sup> (<i>n</i> = 2–6) Chini’s clusters with increasing amounts of PPh<sub>3</sub> has been investigated in detail by combined FT-IR, <sup>31</sup>P­{<sup>1</sup>H} NMR, and electrospray ionization-mass spectrometry (ESI-MS) studies, showing that up to three CO ligands are gradually substituted by PPh<sub>3</sub>, resulting in isonuclear phosphine-substituted anionic clusters of general formula [Pt<sub>3<i>n</i></sub>(CO)<sub>6<i>n</i>−<i>x</i></sub>(PPh<sub>3</sub>)<sub><i>x</i></sub>]<sup>2–</sup> (<i>n</i> = 2–6; <i>x</i> = 1–3). Further addition of PPh<sub>3</sub> results in the elimination of the neutral Pt<sub>3</sub>(CO)<sub>3</sub>(PPh<sub>3</sub>)<sub>3</sub> species and formation of lower nuclearity anionic clusters. [Pt<sub>12</sub>(CO)<sub>22</sub>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2–</sup> and [Pt<sub>9</sub>(CO)<sub>16</sub>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2–</sup> have been structurally characterized, and they maintain the trigonal prismatic structures of the parent homoleptic clusters, with the two PPh<sub>3</sub> ligands bonded to different external Pt<sub>3</sub>-triangles in relative cis-position. Conversely, the crystal structure of [Pt<sub>6</sub>(CO)<sub>10</sub>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2–</sup> shows that its metal cage is transformed from trigonal prismatic to trigonal antiprismatic after CO/PPh<sub>3</sub> exchange

    New High-Nuclearity Carbonyl and Carbonyl-Substituted Rhodium Clusters and Their Relationships with Polyicosahedral Carbonyl-Substituted Palladium- and Gold-Thiolates

    No full text
    A reinvestigation of the synthesis of [H<sub>5–<i>n</i></sub>Rh<sub>13</sub>(CO)<sub>24</sub>]<sup><i>n</i>−</sup> (<i>n</i> = 2, 3) led to isolation of a series of Rh<sub>19</sub>, Rh<sub>26</sub>, and Rh<sub>33</sub> high-nuclearity carbonyl and carbonyl-substituted rhodium clusters. The [Rh<sub>19</sub>(CO)<sub>31</sub>]<sup>5–</sup> (<b>1</b>) is electronically equivalent with [Pt<sub>19</sub>(CO)<sub>22</sub>]<sup>4–</sup>, but poor crystal diffraction data of all salts obtained to date have prevented its geometrical analysis. The structures of Rh<sub>26</sub>(CO)<sub>29</sub>(CH<sub>3</sub>CN)<sub>11</sub> (<b>2</b>) as <b>2</b>·2CH<sub>3</sub>CN and [Rh<sub>33</sub>(CO)<sub>47</sub>]<sup>5–</sup> (<b>3</b>) as [NEt<sub>4</sub>]<sub>5</sub>[<b>3</b>]·Me<sub>2</sub>CO were determined from complete X-ray diffraction determinations. The latter two species adopt polyicosahedral metal frameworks, and notably, [Rh<sub>33</sub>(CO)<sub>47</sub>]<sup>5–</sup> represents the molecular group 9 metal carbonyl cluster of highest nuclearity so far reported

    New High-Nuclearity Carbonyl and Carbonyl-Substituted Rhodium Clusters and Their Relationships with Polyicosahedral Carbonyl-Substituted Palladium- and Gold-Thiolates

    No full text
    A reinvestigation of the synthesis of [H<sub>5–<i>n</i></sub>Rh<sub>13</sub>(CO)<sub>24</sub>]<sup><i>n</i>−</sup> (<i>n</i> = 2, 3) led to isolation of a series of Rh<sub>19</sub>, Rh<sub>26</sub>, and Rh<sub>33</sub> high-nuclearity carbonyl and carbonyl-substituted rhodium clusters. The [Rh<sub>19</sub>(CO)<sub>31</sub>]<sup>5–</sup> (<b>1</b>) is electronically equivalent with [Pt<sub>19</sub>(CO)<sub>22</sub>]<sup>4–</sup>, but poor crystal diffraction data of all salts obtained to date have prevented its geometrical analysis. The structures of Rh<sub>26</sub>(CO)<sub>29</sub>(CH<sub>3</sub>CN)<sub>11</sub> (<b>2</b>) as <b>2</b>·2CH<sub>3</sub>CN and [Rh<sub>33</sub>(CO)<sub>47</sub>]<sup>5–</sup> (<b>3</b>) as [NEt<sub>4</sub>]<sub>5</sub>[<b>3</b>]·Me<sub>2</sub>CO were determined from complete X-ray diffraction determinations. The latter two species adopt polyicosahedral metal frameworks, and notably, [Rh<sub>33</sub>(CO)<sub>47</sub>]<sup>5–</sup> represents the molecular group 9 metal carbonyl cluster of highest nuclearity so far reported

    Bonjean Louis-Bernard

    No full text
    Entrée de dictionnaireDictionnaire historique des juristes français XIIe-XXe siècle

    Synthesis, Structure, and Electrochemistry of the Ni–Au Carbonyl Cluster [Ni<sub>12</sub>Au(CO)<sub>24</sub>]<sup>3–</sup> and Its Relation to [Ni<sub>32</sub>Au<sub>6</sub>(CO)<sub>44</sub>]<sup>6–</sup>

    No full text
    A detailed study of the reaction between [Ni<sub>6</sub>(CO)<sub>12</sub>]<sup>2–</sup> and [AuCl<sub>4</sub>]<sup>−</sup> afforded the isolation of the new Ni–Au cluster [Ni<sub>12</sub>Au­(CO)<sub>24</sub>]<sup>3–</sup> as well as identifying an improved synthesis for the previously reported [Ni<sub>32</sub>Au<sub>6</sub>(CO)<sub>44</sub>]<sup>6–</sup>. The new [Ni<sub>12</sub>Au­(CO)<sub>24</sub>]<sup>3–</sup> cluster is composed by two [Ni<sub>6</sub>(CO)<sub>12</sub>]<sup>2–</sup> moieties coordinated to a central Au­(I) ion, as determined by X-ray diffraction. It is noteworthy that the two [Ni<sub>6</sub>(CO)<sub>12</sub>]<sup>2–</sup> fragments display different geometries, i.e., trigonal antiprismatic (distorted octahedral) and distorted trigonal prismatic (monocapped square pyramidal). The chemical reactivity of these clusters and their electrochemical behavior have been studied. [Ni<sub>12</sub>Au­(CO)<sub>24</sub>]<sup>3–</sup> is irreversibly transformed, upon electrochemical reduction, into Au(0) and [Ni<sub>6</sub>(CO)<sub>12</sub>]<sup>2–</sup>, followed by the reversible reduction of the latter homometallic cluster. Conversely, [Ni<sub>32</sub>Au<sub>6</sub>(CO)<sub>44</sub>]<sup>6–</sup> displays five reductions, with apparent features of reversibility, confirming the ability of larger metal carbonyl clusters to reversibly accept and release electrons

    Octahedral Co-Carbide Carbonyl Clusters Decorated by [AuPPh<sub>3</sub>]<sup>+</sup> Fragments: Synthesis, Structural Isomerism, and Aurophilic Interactions of Co<sub>6</sub>C(CO)<sub>12</sub>(AuPPh<sub>3</sub>)<sub>4</sub>

    No full text
    The Co<sub>6</sub>C­(CO)<sub>12</sub>(AuPPh<sub>3</sub>)<sub>4</sub> carbide carbonyl cluster was obtained from the reaction of [Co<sub>6</sub>C­(CO)<sub>15</sub>]<sup>2–</sup> with Au­(PPh<sub>3</sub>)­Cl. This new species was investigated by variable-temperature <sup>31</sup>P NMR spectroscopy, X-ray crystallography, and density functional theory methods. Three different solvates were characterized in the solid state, namely, Co<sub>6</sub>C­(CO)<sub>12</sub>(AuPPh<sub>3</sub>)<sub>4</sub> (<b>I</b>), Co<sub>6</sub>C­(CO)<sub>12</sub>(AuPPh<sub>3</sub>)<sub>4</sub>·THF (<b>II</b>), and Co<sub>6</sub>C­(CO)<sub>12</sub>(AuPPh<sub>3</sub>)<sub>4</sub>·4THF (<b>III</b>), where THF = tetrahydrofuran. These are not merely different solvates of the same neutral cluster, but they contain three different isomers of Co<sub>6</sub>C­(CO)<sub>12</sub>(AuPPh<sub>3</sub>)<sub>4</sub>. The three isomers <b>I–III</b> possess the same octahedral [Co<sub>6</sub>C­(CO)<sub>12</sub>]<sup>4–</sup> carbido–carbonyl core differently decorated by four [AuPPh<sub>3</sub>]<sup>+</sup> fragments and showing a different Au­(I)···Au­(I) connectivity. Theoretical investigations suggest that the formation in the solid state of the three isomers during crystallization is governed by packing and van der Waals forces, as well as aurophilic and weak π–π and π–H interactions. In addition, the closely related cluster Co<sub>6</sub>C­(CO)<sub>12</sub>(PPh<sub>3</sub>)­(AuPPh<sub>3</sub>)<sub>2</sub> was obtained from the reaction of [Co<sub>8</sub>C­(CO)<sub>18</sub>]<sup>2–</sup> with Au­(PPh<sub>3</sub>)­Cl, and two of its solvates were crystallographically characterized, namely, Co<sub>6</sub>C­(CO)<sub>12</sub>(PPh<sub>3</sub>)­(AuPPh<sub>3</sub>)<sub>2</sub>·toluene (<b>IV</b>) and Co<sub>6</sub>C­(CO)<sub>12</sub>(PPh<sub>3</sub>)­(AuPPh<sub>3</sub>)<sub>2</sub>·0.5toluene (<b>V</b>). A significant, even if minor, effect of the cocrystallized solvent molecules on the structure of the cluster was observed also in this case

    The Redox Chemistry of [Co<sub>6</sub>C(CO)<sub>15</sub>]<sup>2–</sup>: A Synthetic Route to New Co-Carbide Carbonyl Clusters

    No full text
    The oxidation and reduction reactions of [Co<sub>6</sub>C­(CO)<sub>15</sub>]<sup>2–</sup> have been studied in detail, leading to the isolation of several new Co-carbide carbonyl clusters. Thus, [Co<sub>6</sub>C­(CO)<sub>15</sub>]<sup>2–</sup> reacts in tetrahydrofuran (THF) with oxidants such as HBF<sub>4</sub>·Et<sub>2</sub>O and [Cp<sub>2</sub>Fe]­[PF<sub>6</sub>], resulting first in the formation of the previously reported [Co<sub>6</sub>C­(CO)<sub>14</sub>]<sup>−</sup>; then, in CH<sub>2</sub>Cl<sub>2</sub>, the new dicarbide [Co<sub>11</sub>C<sub>2</sub>(CO)<sub>23</sub>]<sup>2–</sup> is formed. The latter may be further oxidized, yielding the isostructural monoanion [Co<sub>11</sub>C<sub>2</sub>(CO)<sub>23</sub>]<sup>−</sup>, whereas its reduction with (cyclopentadienyl)<sub>2</sub>Co affords the unstable trianion [Co<sub>11</sub>C<sub>2</sub>(CO)<sub>23</sub>]<sup>3–</sup>, which decomposes during workup. Oxidation of [Co<sub>6</sub>C­(CO)<sub>15</sub>]<sup>2–</sup> in CH<sub>3</sub>CN with [C<sub>7</sub>H<sub>7</sub>]­[BF<sub>4</sub>] affords the same major products, and besides, the new monoacetylide [Co<sub>10</sub>(C<sub>2</sub>)­(CO)<sub>21</sub>]<sup>2–</sup> was obtained as side-product. Conversely, the reduction of [Co<sub>6</sub>C­(CO)<sub>15</sub>]<sup>2–</sup> in THF with increasing amounts of Na/naphthalene results in the following species: [Co<sub>6</sub>C­(CO)<sub>13</sub>]<sup>2–</sup>, [Co<sub>11</sub>(C<sub>2</sub>)­(CO)<sub>22</sub>]<sup>3–</sup>, [Co<sub>7</sub>C­(CO)<sub>15</sub>]<sup>3–</sup>, [Co<sub>8</sub>C­(CO)<sub>17</sub>]<sup>4–</sup>, [Co<sub>6</sub>C­(CO)<sub>12</sub>]<sup>3–</sup>, and [Co­(CO)<sub>4</sub>]<sup>−</sup>. The new [Co<sub>11</sub>C<sub>2</sub>(CO)<sub>23</sub>]<sup>−</sup>, [Co<sub>11</sub>C<sub>2</sub>(CO)<sub>23</sub>]<sup>2–</sup>, [Co<sub>10</sub>(C<sub>2</sub>)­(CO)<sub>21</sub>]<sup>2–</sup>, [Co<sub>8</sub>C­(CO)<sub>17</sub>]<sup>4–</sup>, [Co<sub>6</sub>C­(CO)<sub>12</sub>]<sup>3–</sup>, and [Co<sub>7</sub>C­(CO)<sub>15</sub>]<sup>3–</sup> clusters were structurally characterized. Moreover, the paramagnetic species [Co<sub>11</sub>C<sub>2</sub>(CO)<sub>23</sub>]<sup>2–</sup> and [Co<sub>6</sub>C­(CO)<sub>12</sub>]<sup>3–</sup> were investigated by means of electron paramagnetic resonance spectroscopy. Finally, electrochemical studies were performed on [Co<sub>11</sub>C<sub>2</sub>(CO)<sub>23</sub>]<sup><i>n</i>−</sup> (<i>n</i> = 1–3)
    corecore