3,358 research outputs found

    Unified hydrodynamics theory of the lowest Landau level

    Full text link
    We propose a hydrodynamics theory of collective quantum Hall states, which describes incompressible liquids, hexatic liquid crystals, a bubble solid and a Wigner crystal states within a unified framework. The structure of the theory is uniquely determined by the space-time symmetry, and a symmetry with respect to static shear deformations. In agreement with recent experiments the theory predicts two gapped collective modes for incompressible liquids. We argue that the presence of the above two modes is a universal property of a magnetized two-dimensional collective liquid.Comment: RevTex, 8 pages. Revised and expanded versio

    Zero Sound and First Sound in a Disk-Shaped Normal Fermi gas

    Full text link
    We study the zero sound and the first sound in a dilute and ultracold disk-shaped normal Fermi gas with a strong harmonic confinement along the axial direction and uniform in the two planar directions. Working at zero temperature we calculate the chemical potential μ\mu of the fermionic fluid as a function of the uniform planar density ρ\rho and find that μ\mu changes its slope in correspondence to the filling of harmonic axial modes (shell effects). Within the linear response theory, and under the random phase approximation, we calculate the velocity cs0c^{0}_s of the zero sound. We find that also cs0c^0_s changes its slope in correspondence of the filling of the harmonic axial modes and that this effect depends on the Fermi-Fermi scattering length aFa_F. In the collisional regime, we calculate the velocity csc_s of first sound showing that csc_s displays jumps at critical densities fixed by the scattering length aFa_F. Finally, we discuss the experimental achievability of these zero sound and first sound waves with ultracold alkali-metal atoms.Comment: 9 pages, 5 figures, editorially approved for publication on Phys. Rev.

    To what extent can dynamical models describe statistical features of turbulent flows?

    Full text link
    Statistical features of "bursty" behaviour in charged and neutral fluid turbulence, are compared to statistics of intermittent events in a GOY shell model, and avalanches in different models of Self Organized Criticality (SOC). It is found that inter-burst times show a power law distribution for turbulent samples and for the shell model, a property which is shared only in a particular case of the running sandpile model. The breakdown of self-similarity generated by isolated events observed in the turbulent samples, is well reproduced by the shell model, while it is absent in all SOC models considered. On this base, we conclude that SOC models are not adequate to mimic fluid turbulence, while the GOY shell model constitutes a better candidate to describe the gross features of turbulence.Comment: 14 pages, 4 figures, in press on Europhys. Lett. (may 2002

    Measurement of electron-hole friction in an n-doped GaAs/AlGaAs quantum well using optical transient grating spectroscopy

    Full text link
    We use phase-resolved transient grating spectroscopy to measure the drift and diffusion of electron-hole density waves in a semiconductor quantum well. The unique aspects of this optical probe allow us to determine the frictional force between a two-dimensional Fermi liquid of electrons and a dilute gas of holes. Knowledge of electron-hole friction enables prediction of ambipolar dynamics in high-mobility electron systems.Comment: to appear in PR

    Dark matter effects in vacuum spacetime

    Full text link
    We analyze a toy model describing an empty spacetime in which the motion of a test mass (and the trajectories of photons) evidence the presence of a continuous and homogeneous distribution of matter; however, since the energy-momentum tensor vanishes, no real matter or energy distribution is present at all. Thus, a hypothetical observer will conclude that he is immersed in some sort of dark matter, even though he has no chance to directly detect it. This suggests yet another possibility of explaining the elusive dark matter as a purely dynamical effect due to the curvature of spacetime.Comment: 5 pages, 2 figures, expanded with comments about the exact motion and curvature invariant

    Physical Adsorption at the Nanoscale: Towards Controllable Scaling of the Substrate-Adsorbate van der Waals Interaction

    Get PDF
    The Lifshitz-Zaremba-Kohn (LZK) theory is commonly considered as the correct large-distance limit for the van der Waals (vdW) interaction of adsorbates (atoms, molecules, or nanoparticles) with solid substrates. In the standard approximate form, implicitly based on "local" dielectric functions, the LZK approach predicts universal power laws for vdW interactions depending only on the dimensionality of the interacting objects. However, recent experimental findings are challenging the universality of this theoretical approach at finite distances of relevance for nanoscale assembly. Here, we present a combined analytical and numerical many-body study demonstrating that physical adsorption can be significantly enhanced at the nanoscale. Regardless of the band gap or the nature of the adsorbate specie, we find deviations from conventional LZK power laws that extend to separation distances of up to 10--20 nanometers. Comparison with recent experimental observation of ultra long-ranged vdW interactions in the delamination of graphene from a silicon substrate reveals qualitative agreement with the present theory. The sensitivity of vdW interactions to the substrate response and to the adsorbate characteristic excitation frequency also suggests that adsorption strength can be effectively tuned in experiments, paving the way to an improved control of physical adsorption at the nanoscale

    Improved Lieb-Oxford exchange-correlation inequality with gradient correction

    Full text link
    We prove a Lieb-Oxford-type inequality on the indirect part of the Coulomb energy of a general many-particle quantum state, with a lower constant than the original statement but involving an additional gradient correction. The result is similar to a recent inequality of Benguria, Bley and Loss, except that the correction term is purely local, which is more usual in density functional theory. In an appendix, we discuss the connection between the indirect energy and the classical Jellium energy for constant densities. We show that they differ by an explicit shift due to the long range of the Coulomb potential.Comment: Final version to appear in Physical Review A. Compared to the very first version, this one contains an appendix discussing the link with the Jellium proble

    Novel Treatments and Technologies Applied to the Cure of Neuroblastoma

    Get PDF
    Neuroblastoma (NB) is the most common extracranial solid tumour in childhood, accounting for approximately 15% of all cancer-related deaths in the paediatric population1. It is characterised by heterogeneous clinical behaviour in neonates and often adverse outcomes in toddlers. The overall survival of children with high-risk disease is around 40–50% despite the aggressive treatment protocols consisting of intensive chemotherapy, surgery, radiation therapy and hematopoietic stem cell transplantation2,3. There is an ongoing research effort to increase NB’s cellular and molecular biology knowledge to translate essential findings into novel treatment strategies. This review aims to address new therapeutic modalities emerging from preclinical studies offering a unique translational opportunity for NB treatment

    Finite size scaling for quantum criticality using the finite-element method

    Full text link
    Finite size scaling for the Schr\"{o}dinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite element method was shown to be a powerful numerical method for ab initio electronic structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, density functional theory under the local density approximation, and an "exact"' formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.Comment: 15 pages, 19 figures, revision based on suggestions by referee, accepted in Phys. Rev.
    corecore