8 research outputs found

    ATAK Complex (Adrenaline, Takotsubo, Anaphylaxis, and Kounis Hypersensitivity-Associated Coronary Syndrome) after COVID-19 Vaccination and Review of the Literature

    No full text
    Anaphylactic events triggered by mRNA COVID-19 vaccines are neither serious nor frequent. Kounis syndrome is described as the concomitant occurrence of acute coronary events and hypersensitivity reactions induced by vasospastic mediators after an allergic event. Kounis syndrome caused by vaccines is very rare. Up to now, only a few cases of allergic myocardial infarction after mRNA COVID-19 vaccine administration have been reported. Takotsubo cardiomyopathy is a syndrome characterized by transient wall movement abnormalities of the left ventricular apex, mid-ventricle, or other myocardial distribution, usually triggered by intense emotional or physical stress. Takotsubo cardiomyopathy after COVID-19 vaccine administration has been reported, usually with a delayed onset. A new entity characterized by the association of adrenaline administration, Takotsubo cardiomyopathy, anaphylaxis, and Kounis hypersensitivity was recently described: the ATAK complex. Here, we report a case of Takotsubo cardiomyopathy that occurred together with an anaphylactic reaction to an mRNA COVID-19 vaccine that required the use of adrenaline. The timing of the allergic reaction and the referenced clinical symptoms could not exclude the idea that Kounis syndrome occurred. Therefore, we can assume the patient presented the ATAK complex. We believe that highlighting on this ATAK complex will aid the application of proper diagnostic, preventive and therapeutic measures

    ATAK Complex (Adrenaline, Takotsubo, Anaphylaxis, and Kounis Hypersensitivity-Associated Coronary Syndrome) after COVID-19 Vaccination and Review of the Literature

    No full text
    Anaphylactic events triggered by mRNA COVID-19 vaccines are neither serious nor frequent. Kounis syndrome is described as the concomitant occurrence of acute coronary events and hypersensitivity reactions induced by vasospastic mediators after an allergic event. Kounis syndrome caused by vaccines is very rare. Up to now, only a few cases of allergic myocardial infarction after mRNA COVID-19 vaccine administration have been reported. Takotsubo cardiomyopathy is a syndrome characterized by transient wall movement abnormalities of the left ventricular apex, mid-ventricle, or other myocardial distribution, usually triggered by intense emotional or physical stress. Takotsubo cardiomyopathy after COVID-19 vaccine administration has been reported, usually with a delayed onset. A new entity characterized by the association of adrenaline administration, Takotsubo cardiomyopathy, anaphylaxis, and Kounis hypersensitivity was recently described: the ATAK complex. Here, we report a case of Takotsubo cardiomyopathy that occurred together with an anaphylactic reaction to an mRNA COVID-19 vaccine that required the use of adrenaline. The timing of the allergic reaction and the referenced clinical symptoms could not exclude the idea that Kounis syndrome occurred. Therefore, we can assume the patient presented the ATAK complex. We believe that highlighting on this ATAK complex will aid the application of proper diagnostic, preventive and therapeutic measures

    Involvement of miR-142 and miR-155 in Non-Infectious Complications of CVID

    No full text
    Background and objectives: Common variable immunodeficiency (CVID) is the most prevalent antibody impairment. It is characterized by failure in immunoglobulin and protective antibody generation and defined by an increased tendency toward bacterial infections, autoimmunity, and malignancy. Most CVID diagnoses do not follow a classical Mendelian pattern of inheritance. In recent years, CVID has been considered an epigenetic phenomenon in the majority of cases, overtaking previous monogenetic and/or polygenetic theories. The aim of this study was to review the role of microRNAs (miRNAs) in CVID, focusing on the involvement of the same miRNAs in various non-infectious clinical complications of CVID, mainly autoimmunity and/or cancer. Materials and Methods: A bibliographic search of the scientific literature was carried out independently by two researchers in scientific databases and search engines. The MeSH terms “microRNAs” and “common variable immunodeficiency” were used. All research articles from inception to May 2020 were considered. Results: The literature data showed the involvement of two miRNAs in primary immunodeficiency: miR-142 and miR-155. Both of these miRNAs have been investigated through mice models, in which miR-142 and miR-155 were deleted. These knock-out (KO) mice models showed phenotypic analogies to CVID patients with hypogammaglobulinemia, adaptive immunodeficiency, polyclonal proliferation, lung disease, and enteric inflammation. miR-142 and miR-155 have been found to be involved in the following autoimmune and neoplastic clinical complications of CVID: Gastric cancer, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, natural killer/Tcell lymphoma (NKTCL), and immune thrombocytopenia. Conclusions: miR-142 and miR-155 deregulation leads to similar CVID phenotypesin KO mice models. Although no data are available on the involvement of these miRNAs in human CVID, their dysregulation has been detected in human CVID comorbidities. The literature data show that miRNA sequences in murine models are comparable to those in humans; therefore, miR-142 and miR-155 involvement in human CVID could be hypothesized

    Enabling Smart System design with the SMAC Platform

    No full text
    Complex "smart" devices made of heterogeneous components and incorporating functions of sensing, actuation and control are increasingly requested, but, for the development of next generation systems, new techniques are required for managing the increasing design complexity. The SMAC Project aims at developing a common solution for Smart System design where cross-sectional flows converge into a common Platform, based on (co-)simulation and model abstraction methodologies. This paper describes the main requirements and features of the SMAC Platform and two industrial case studie

    Smart System Case Studies

    No full text
    This chapter presents two case studies showing how the proposed approach applies to smart system design and optimization. The former is the virtual prototyping platform built for a laser pico-projector actuator, where MEMS, analog and digital components are simulated with the aim of optimizing the resulting image quality by means of firmware tuning. The latter, in the context of wearable equipment for inertial body motion reconstruction, deals with the modeling of an inertial sensor node, supporting system accuracy evaluation and sensor fusion enhancement. Finally, the Open-Source Test Case (OSTC) is described, showing a complete modeling and simulation flow on a publicly available design

    Looking at Human Cytosolic Sialidase NEU2 Structural Features with an Interdisciplinary Approach

    No full text
    Circular dichroism (CD) spectra at variable temperatures have been recorded for human cytosolic sialidase NEU2 in buffered water solutions and in the presence of divalent cations. The results show the prevalence of β-strands together with a considerable amount of α-helical structure, while in the solid state, from both previous X-ray diffraction analysis and our CD data on film samples, the content of β-strands is higher. In solution, a significant change in CD spectra occurs with an increase in temperature, related to a decrease in α-helix content and a slight increase in β-strand content. In the same range of temperatures, the enzymatic activity decreases. Although the overall structure of the protein appears to be particularly stable, molecular dynamics simulations performed at various temperatures evidence local conformational changes possibly relevant for explaining the relative lability of enzymatic activity

    Elotuzumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: Extended 3-year follow-up of a multicenter, retrospective clinical experience with 319 cases outside of controlled clinical trials

    No full text
    The combination of elotuzumab, lenalidomide, and dexamethasone (EloRd) enhanced the clinical benefit over Rd with a manageable toxicity profile in the ELOQUENT-2 trial, leading to its approval in relapsed/refractory multiple myeloma (RRMM). The present study is a 3-year follow-up update of a previously published Italian real-life RRMM cohort of patients treated with EloRd. This revised analysis entered 319 RRMM patients accrued in 41 Italian centers. After a median follow-up of 36 months (range 6–55), 236 patients experienced disease progression or died. Median progression-free survival (PFS) and overall survival (OS) were 18.4 and 34 months, respectively. The updated multivariate analyses showed a significant reduction of PFS and OS benefit magnitude only in cases with International Staging System stage III. Major adverse events included grade 3/4 neutropenia (18.5%), anemia (15.4%), lymphocytopenia (12.5%), and thrombocytopenia (10.7%), while infection rates and pneumonia were 33.9% and 18.9%, respectively. No new safety signals with longer follow-up have been observed. Of 319 patients, 245 (76.7%) reached at least a partial remission. A significantly lower response rate was found in patients previously exposed to lenalidomide. In conclusion, our study confirms that EloRd is a safe and effective regimen for RRMM patients, maintaining benefits across multiple unfavorable subgroups
    corecore