27 research outputs found
Two-dimensional metal-organic networks as templates for the self-assembly of atom and cluster arrays
This thesis presents a study of the use of two-dimensional metal-organic systems as templates for the organization of metal atoms and clusters on surfaces. We start with a systematic characterization of the metal-organic porous networks formed on Cu(111) by polyphenyl-dicarbonitrile molecules, and of the temperature dependence of the assembly process, leading to a variety of geometrical structures. Using molecules of two different lengths we observe networks with distinct periodicities, and we reveal a competition between the different interactions governing the assembly. We also study the self-assembly of a single molecule magnet on supported graphene, observing the same disposition as in a layer of the molecular crystal, which explains the high magnetic anisotropy measured for the system. The metal-organic template is used to organize metal atoms and clusters in the network pores, obtaining a regular array of clusters with a narrow size distribution. We demonstrate how this approach can be used to produce clusters of different elements, such as Fe, Co and Er, as well as mixed transition metal - rare earth metal clusters. Otherwise, the metal-organic networks can be used to organize Fe atoms under the molecules, in which case a two-orbital Kondo system with a marked spatial dependence is obtained. After characterizing the magnetic properties of Fe atoms adsorbed on bare Cu(111), we use a combination of scanning tunneling spectroscopy, density functional theory and x-ray absorption and dichroism to study the Kondo effect of the Fe-molecule system, identifying the involved magnetic orbitals and demonstrating that they are both Kondo screened
Effect of the Glucagon-Like Peptide-1 Receptor Agonists on Autonomic Function in Subjects with Diabetes: A Systematic Review and Meta-Analysis
Background: In addition to the metabolic effects in diabetes, glucagon-like peptide 1 receptor (GLP-1R) agonists lead to a small but substantial increase in heart rate (HR). However, the GLP-1R actions on the autonomic nervous system (ANS) in diabetes remain debated. Therefore, this meta-analysis evaluates the effect of GLP-1R agonist on measures of ANS function in diabetes. Methods: According to the Cochrane Collaboration and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, we conducted a meta-analysis considering clinical trials in which the autonomic function was evaluated in diabetic subjects chronically treated with GLP-1R agonists. The outcomes were the change of ANS function measured by heart rate variability (HRV) and cardiac autonomic reflex tests (CARTs). Results: In the studies enrolled, HR significantly increased after treatment (P<0.001), whereas low frequency/high frequency ratio did not differ (P=0.410); no changes in other measures of HRV were detected. Considering CARTs, only the 30:15 value derived from lying-to-standing test was significantly lower after treatment (P=0.002), but only two studies reported this measurement. No differences in other CARTs outcome were observed. Conclusion: The meta-analysis confirms the HR increase but seems to exclude an alteration of the sympatho-vagal balance due to chronic treatment with GLP-1R agonists in diabetes, considering the available measures of ANS function
Competing Interactions in the Self-Assembly of NC-Ph-3-CN Molecules on Cu(111)
We report on low-temperature scanning tunneling microscopy and spectroscopy measurements on NC-Ph-3-CN molecules adsorbed at 300 K on a Cu(111) surface. Upon cooling, the molecules form chain and honeycomb structures, incorporating Cu adatoms supplied by the substrate as metal linkers. In these assemblies, the molecules align along two main directions, with a relative abundance that depends on the coordination number and on the bond length. We show spectroscopic data about the unoccupied molecular orbitals and investigate the patterns obtained by depositing different amounts of molecules. Comparison of these results with the ones obtained for NC-Ph-5-CN molecules on the same substrate enables us to establish a hierarchy of the different interaction forces at work in the system
Temperature-dependent self-assembly of NC–Ph5–CN molecules on Cu(111)
We present the results of temperature-dependent self-assembly of dicarbonitrile-pentaphenyl molecules (NC-Ph-5-CN) on Cu(111). Our low-temperature scanning tunneling microscopy study reveals the formation of metal-organic and purely organic structures, depending on the substrate temperature during deposition (160-300 K), which determines the availability of Cu adatoms at the surface. We use tip functionalization with CO to obtain submolecular resolution and image the coordination atoms, enabling unequivocal identification of metal-coordinated nodes and purely organic ones. Moreover, we discuss the somewhat surprising structure obtained for deposition and measurement at 300 K. (C) 2015 AIP Publishing LLC
Arming Mesenchymal Stromal/Stem Cells Against Cancer: Has the Time Come?
Since mesenchymal stromal/stem cells (MSCs) were discovered, researchers have been drawn to study their peculiar biological features, including their immune privileged status and their capacity to selectively migrate into inflammatory areas, including tumors. These properties make MSCs promising cellular vehicles for the delivery of therapeutic molecules in the clinical setting. In recent decades, the engineering of MSCs into biological vehicles carrying anticancer compounds has been achieved in different ways, including the loadingof MSCs with chemotherapeutics or drug functionalized nanoparticles (NPs), genetic modifications to force the production of anticancer proteins, and the use of oncolytic viruses. Recently, it has been demonstrated that wild-type and engineered MSCs can release extracellular vesicles (EVs) that contain therapeutic agents. Despite the enthusiasm for MSCs as cyto-pharmaceutical agents, many challenges, including controlling the fate of MSCs after administration, must still be considered. Preclinical results demonstrated that MSCs accumulate in lung, liver, and spleen, which could prevent their engraftment into tumor sites. For this reason, physical, physiological, and biological methods have been implemented to increase MSC concentration in the target tumors. Currently, there are more than 900 registered clinical trials using MSCs. Only a
small fraction of these are investigating MSC-based therapies for cancer, but the number of these clinical trials is expected to increase as technology and our understanding of MSCs improve. This review will summarize MSC-based antitumor therapies to generate an increasing awareness of their potential and limits to accelerate their clinical translation
Formation of Fe Cluster Superlattice in a Metal-Organic Quantum-Box Network
We report on the self-assembly of Fe adatoms on a Cu(111) surface that is patterned by a metal-organic honeycomb network, formed by coordination of dicarbonitrile pentaphenyl molecules with Cu adatoms. Fe atoms landing on the metal surface are mobile and steered by the quantum confinement of the surface state electrons towards the center of the network hexagonal cavities. In cavities hosting more than one Fe, preferential interatomic distances are observed. The adatoms in each hexagon aggregate into a single cluster upon gentle annealing. These clusters are again centered in the cavities and their size is discerned by their distinct apparent heights. DOI: 10.1103/PhysRevLett.110.08610
Two-Orbital Kondo Screening in a Self-Assembled Metal Organic Complex
Iron atoms adsorbed on a Cu(111) surface and buried under polyphenyl dicarbonitrile molecules exhibit strongly spatial anisotropic Kondo features with directionally dependent Kondo temperatures and line shapes, as evidenced by scanning tunneling spectroscopy. First-principles calculations find nearly full polarization for the half-filled Fe 3d(xz) and 3d(yz) orbitals, which therefore can give rise to Kondo screening with the experimentally observed directional dependence and distinct Kondo temperatures. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements confirm that the spin in both channels is effectively Kondo-screened. At ideal Fe coverage, these two-orbital Kondo impurities are arranged in a self-assembled honeycomb superlattice
Multiplet features and magnetic properties of Fe on Cu(111): From single atoms to small clusters
The observation of sharp atomiclike multiplet features is unexpected for individual 3d atoms adsorbed on transition-metal surfaces. However, we show by means of x-ray absorption spectroscopy and x-ray magnetic circular dichroism that individual Fe atoms on Cu(111) exhibit such features. They are reminiscent of a low degree of hybridization, similar to 3d atoms adsorbed on alkali-metal surfaces. We determine the spin, orbital, and total magnetic moments, as well as magnetic anisotropy energy for the individual Fe atoms and for small Fe clusters that we form by increasing the coverage. The multiplet features are smoothened and the orbital moment rapidly decreases with increasing cluster size. For Fe monomers, comparison with density functional theory and multiplet calculations reveals a d(7) electronic configuration, owing to the transfer of one electron from the 4s to the 3d states