2 research outputs found

    A Synthetic Disaccharide Analogue from Neisseria meningitidis A Capsular Polysaccharide Stimulates Immune Cell Responses and Induces Immunoglobulin G (IgG) Production in Mice When Protein-Conjugated

    No full text
    Some new phosphonoester-linked oligomers, stabilized analogues of the corresponding phosphate-bridged oligomers of Neisseria meningitidis A (MenA) capsular polysaccharide (CPS), were conjugated to human serum albumin (HSA), as a protein carrier model, and studied for immunological activities. We determined (i) in vitro, their biocompatibility (CAM test) and activity in inducing both T cell proliferation (CFSE method) and IL-2 release (ELISA), and (ii) in vivo, their ability to stimulate specific IgG antibody production (ELISA). All HSA-conjugated compounds induce T cell proliferation (40% of proliferation at 10<sup>2</sup> μM), whereas only the phosphonodisaccharide was effective (28% of proliferation at 10<sup>2</sup> μM) among the unconjugated forms. IL-2 release confirmed these results. In addition, the HSA-conjugated showed in vivo the capacity of eliciting the production of specific IgG antibodies. In conclusion, we obtained novel biocompatible, water-stable, and immunoactive MenA CPS analogues. A short disaccharide fragment showed the unusual behavior of triggering T cell proliferation in vitro

    Immunoactivity of Protein Conjugates of Carba Analogues from <i>Neisseria meningitidis</i> A Capsular Polysaccharide

    No full text
    <i>Neisseria meningitidis</i> type A (MenA) is a Gram-negative encapsulated bacterium that is a major cause of epidemic meningitis, especially in the sub-Saharan region of Africa. The development and manufacture of a liquid glycoconjugate vaccine against MenA are hampered by the poor hydrolytic stability of its capsular polysaccharide (CPS), consisting of (1→6)-linked 2-acetamido-2-deoxy-α-d-mannopyranosyl phosphate repeating units. The replacement of the ring oxygen with a methylene group to generate a carbocyclic analogue leads to enhancement of its chemical stability. Herein, we report conjugation of carbocyclic analogue monomer, dimer, and trimer to the protein carrier CRM<sub>197</sub>. After immunization in mice, only the conjugated trimer was able to induce specific anti-MenA polysaccharide IgG antibodies with <i>in vitro</i> bactericidal activity, although to a lesser extent than pentadecamer and hexamer oligomers obtained from mild acid hydrolysis of the native polysaccharide conjugated to the same protein carrier. This study represents the first proof-of-concept that hydrolytically stable structural analogues of saccharide antigens can be used for the development of efficacious antimicrobial preventative therapies. Conjugates with longer carbocyclic oligomers and/or precise acetylation patterns could further increase the induced immune response to a level comparable with those of commercially available anti-meningococcal glycoconjugate vaccines
    corecore