182 research outputs found

    Osteoarthritis: What does imaging tell us about its etiology.

    Get PDF
    Osteoarthritis (OA) is the most common joint disorder and a leading cause of disability. Due to an aging population and increasing obesity, the incidence of OA is rising. The etiology of OA is multifactorial and complex; thus prevention of OA remains challenging. Risk factors can be divided into person-level factors such as age, sex, obesity, genetics, race/ethnicity, and diet, and joint-level factors including injury, malalignment, and abnormal loading of the joints. This review provides a brief overview of the person-level risk factors and a more in-depth analysis of those at the joint level. It is only through an improved understanding of risk factors for the disease that we may be able to intervene meaningfully and prevent its occurrence

    Revisiting geochemical controls on patterns of carbonate deposition through the lens of multiple pathways to mineralization

    Get PDF
    The carbonate sedimentary record contains diverse compositions and textures that reflect the evolution of oceans and atmospheres through geological time. Efforts to reconstruct paleoenvironmental conditions from these deposits continue to be hindered by the need for process-based models that can explain observed shifts in carbonate chemistry and form. Traditional interpretations assume minerals precipitate and grow by classical ion-by-ion addition processes but are unable to reconcile a number of unusual features contained in Proterozoic carbonates. The realization that diverse organisms produce high Mg carbonate skeletal structures by non-classical pathways involving amorphous intermediates raises the question of whether similar processes are also active in sedimentary environments. This study examines the hypothesis that non-classical pathways to mineralization are the physical basis for some of the carbonate morphologies and compositions observed in natural and laboratory settings. We designed experiments with a series of different solution Mg : Ca ratios and saturation environments to investigate the effects on carbonate phase, Mg content, and morphology. Our observations of diverse carbonate mineral compositions and textures suggest geochemical conditions bias the mineralization pathway by a systematic relationship to Mg : Ca ratio and the abundance of carbonate ions. Environments with low Mg levels produce calcite crystallites with 0–12 mol% MgCO_3. In contrast, the combination of high initial Mg : Ca and rapidly increasing saturation opens a non-classical pathway that begins with extensive precipitation of an amorphous calcium carbonate (ACC). This phase slowly transforms to aggregates of very high Mg calcite nanoparticles whose structures and compositions are similar to natural disordered dolomites. The non-classical pathways are favored when the local environment contains sufficient Mg to inhibit calcite growth through increased solubility—a thermodynamic factor, and achieves saturation with respect to ACC on a timescale that is shorter than the rate of aragonite nucleation—a kinetic factor. Aragonite is produced when Mg levels are high but saturation is insufficient for ACC precipitation. The findings provide a physical basis for anecdotal claims that the interplay of kinetic and thermodynamic factors underlies patterns of carbonate precipitation and suggest the need to expand traditional interpretations of geological carbonate formation to include non-classical pathways to mineralization

    N-Acetylcysteine Serves as Substrate of 3-Mercaptopyruvate Sulfurtransferase and Stimulates Sulfide Metabolism in Colon Cancer Cells

    Get PDF
    Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST

    Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

    Get PDF
    In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar Ophiocoma wendtii This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier-Preston zones known in classical metallurgy. We believe that these calcitic nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy

    Deletion of L-Selectin Increases Atherosclerosis Development in ApoE−/− Mice

    Get PDF
    Atherosclerosis is an inflammatory disease characterized by accumulation of leukocytes in the arterial intima. Members of the selectin family of adhesion molecules are important mediators of leukocyte extravasation. However, it is unclear whether L-selectin (L-sel) is involved in the pathogenesis of atherosclerosis. In the present study, mice deficient in L-selectin (L-sel−/−) animals were crossed with mice lacking Apolipoprotein E (ApoE−/−). The development of atherosclerosis was analyzed in double-knockout ApoE/L-sel (ApoE−/− L-sel−/−) mice and the corresponding ApoE−/− controls fed either a normal or a high cholesterol diet (HCD). After 6 weeks of HCD, aortic lesions were increased two-fold in ApoE−/− L-sel−/− mice as compared to ApoE−/− controls (2.46%±0.54% vs 1.28%±0.24% of total aortic area; p<0.05). Formation of atherosclerotic lesions was also enhanced in 6-month-old ApoE−/− L-sel−/− animals fed a normal diet (10.45%±2.58% vs 1.87%±0.37%; p<0.05). In contrast, after 12 weeks of HCD, there was no difference in atheroma formation between ApoE−/− L-sel−/− and ApoE−/− mice. Serum cholesterol levels remained unchanged by L-sel deletion. Atherosclerotic plaques did not exhibit any differences in cellular composition assessed by immunohistochemistry for CD68, CD3, CD4, and CD8 in ApoE−/− L-sel−/− as compared to ApoE−/− mice. Leukocyte rolling on lesions in the aorta was similar in ApoE−/− L-sel−/− and ApoE−/− animals. ApoE−/− L-sel−/− mice exhibited reduced size and cellularity of peripheral lymph nodes, increased size of spleen, and increased number of peripheral lymphocytes as compared to ApoE−/− controls. These data indicate that L-sel does not promote atherosclerotic lesion formation and suggest that it rather protects from early atherosclerosis

    Viral Decay Kinetics in the Highly Active Antiretroviral Therapy-Treated Rhesus Macaque Model of AIDS

    Get PDF
    To prevent progression to AIDS, persons infected with human immunodeficiency virus type 1 (HIV-1) must remain on highly active antiretroviral therapy (HAART) indefinitely since this modality does not eradicate the virus. The mechanisms involved in viral persistence during HAART are poorly understood, but an animal model of HAART could help elucidate these mechanisms and enable studies of HIV-1 eradication strategies. Due to the specificity of non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for HIV-1, we have used RT-SHIV, a chimeric virus of simian immunodeficiency virus with RT from HIV-1. This virus is susceptible to NNRTIs and causes an AIDS-like disease in rhesus macaques. In this study, two groups of HAART-treated, RT-SHIV-infected macaques were analyzed to determine viral decay kinetics. In the first group, viral loads were monitored with a standard TaqMan RT-PCR assay with a limit of detection of 50 viral RNA copies per mL. Upon initiation of HAART, viremia decayed in a bi-phasic manner with half-lives of 1.7 and 8.5 days, respectively. A third phase was observed with little further decay. In the second group, the macaques were followed longitudinally with a more sensitive assay utilizing ultracentrifugation to concentrate virus from plasma. Bi-phasic decay of viral RNA was also observed in these animals with half-lives of 1.8 and 5.8 days. Viral loads in these animals during a third phase ranged from 2–58 RNA copies/mL, with little decay over time. The viral decay kinetics observed in these macaques are similar to those reported for HIV-1 infected humans. These results demonstrate that low-level viremia persists in RT-SHIV-infected macaques despite a HAART regimen commonly used in humans

    How Landscape Heterogeneity Frames Optimal Diffusivity in Searching Processes

    Get PDF
    Theoretical and empirical investigations of search strategies typically have failed to distinguish the distinct roles played by density versus patchiness of resources. It is well known that motility and diffusivity of organisms often increase in environments with low density of resources, but thus far there has been little progress in understanding the specific role of landscape heterogeneity and disorder on random, non-oriented motility. Here we address the general question of how the landscape heterogeneity affects the efficiency of encounter interactions under global constant density of scarce resources. We unveil the key mechanism coupling the landscape structure with optimal search diffusivity. In particular, our main result leads to an empirically testable prediction: enhanced diffusivity (including superdiffusive searches), with shift in the diffusion exponent, favors the success of target encounters in heterogeneous landscapes
    • …
    corecore