197 research outputs found
A local field emission study of partially aligned carbon-nanotubes by AFM probe
We report on the application of Atomic Force Microscopy (AFM) for studying
the Field Emission (FE) properties of a dense array of long and vertically
quasi-aligned multi-walled carbon nanotubes grown by catalytic Chemical Vapor
Deposition on a silicon substrate. The use of nanometric probes enables local
field emission measurements allowing investigation of effects non detectable
with a conventional parallel plate setup, where the emission current is
averaged on a large sample area. The micrometric inter-electrode distance let
achieve high electric fields with a modest voltage source. Those features
allowed us to characterize field emission for macroscopic electric fields up to
250 V/m and attain current densities larger than 10 A/cm. FE
behaviour is analyzed in the framework of the Fowler-Nordheim theory. A field
enhancement factor 40-50 and a turn-on field 15 V/m at an inter-electrode distance of 1 m are estimated.
Current saturation observed at high voltages in the I-V characteristics is
explained in terms of a series resistance of the order of M. Additional
effects as electrical conditioning, CNT degradation, response to laser
irradiation and time stability are investigated and discussed
Field emission from single multi-wall carbon nanotubes
Electron field emission characteristics of individual multiwalled carbon
nanotubes have been investigated by a piezoelectric nanomanipulation system
operating inside a scanning electron microscopy chamber. The experimental setup
ensures a high control capability on the geometric parameters of the field
emission system (CNT length, diameter and anode-cathode distance). For several
multiwalled carbon nanotubes, reproducible and quite stable emission current
behaviour has been obtained with a dependence on the applied voltage well
described by a series resistance modified Fowler-Nordheim model. A turn-on
field of about 30 V/um and a field enhancement factor of around 100 at a
cathode-anode distance of the order of 1 um have been evaluated. Finally, the
effect of selective electron beam irradiation on the nanotube field emission
capabilities has been extensively investigated.Comment: 16 pages, 5 figure
Local Tunneling Study of Three-Dimensional Order Parameter in the -band of Al-doped MgB Single Crystals
We have performed local tunneling spectroscopy on high quality
MgAlB single crystals by means of Variable Temperature Scanning
Tunneling Spectroscopy (STS) in magnetic field up to 3 Tesla. Single gap
conductance spectra due to c-axis tunneling were extensively measured, probing
different amplitudes of the three-dimensional as a function of Al
content. Temperature and magnetic field dependences of the conductance spectra
were studied in S-I-N configuration: the effect of the doping resulted in a
monotonous reduction of the locally measured down to 24K for x=0.2. On
the other hand, we have found that the gap amplitude shows a maximum value
meV for x=0.1, while the ratio increases
monotonously with doping. The locally measured upper critical field was found
to be strongly related to the gap amplitude, showing the maximum value
for x=0.1 substituted samples. For this Al concentration the
data revealed some spatial inhomogeneity in the distribution of on
nanometer scale.Comment: 4 pages, 3 figure
Two Gap State Density in MgB: A True Bulk Property or A Proximity Effect?
We report on the temperature dependence of the quasiparticle density of
states (DOS) in the simple binary compound MgB2 directly measured using
scanning tunneling microscope (STM). To achieve high quality tunneling
conditions, a small crystal of MgB2 is used as a tip in the STM experiment. The
``sample'' is chosen to be a 2H-NbSe2 single crystal presenting an atomically
flat surface. At low temperature the tunneling conductance spectra show a gap
at the Fermi energy followed by two well-pronounced conductance peaks on each
side. They appear at voltages V mV and V mV. With rising temperature both peaks disappear at the Tc of the bulk
MgB2, a behavior consistent with the model of two-gap superconductivity. The
explanation of the double-peak structure in terms of a particular proximity
effect is also discussed.Comment: 4 pages, 3 figure
Fluorescence spectroscopy of normal and follicular cancer samples from human thyroid
An autofluorescence analysis has been performed on healthy as well as tumour thyroid tissue samples to distinguish follicular cancer from normal thyroid. Complete spectra and synchronous spectra have been recordered from properly stored samples. Fluorescence bands located at 350 nm and 400 nm has been observed in the analysed cancer samples
Vacuum gauge from ultrathin MoS2 transistor
We fabricate monolayer MoS2 field effect transistors and study their electric
characteristics from 10^-6 Torr to atmospheric air pressure. We show that the
threshold voltage of the transistor increases with the growing pressure. Hence,
we propose the device as an air pressure sensor, showing that it is
particularly suitable as a low power consumption vacuum gauge. The device
functions on pressure-dependent O2, N2 and H2O molecule adsorption that affect
the n-doping of the MoS2 channel.Comment: 10 pages, 4 figure - conference pape
Definitive experimental evidence for two-band superconductivity in MgB2
The superconducting gap of MgB2 has been studied by high-resolution
angle-resolved photoemission spectroscopy (ARPES). The momentum(k)-resolving
capability of ARPES enables us to identify the s- and p-orbital derived bands
predicted from band structure calculations and to successfully measure the
superconducting gap on each band. The results show that superconducting gaps
with values of 5.5 meV and 2.2 meV open on the s-band and the p-band,
respectively, but both the gaps close at the bulk transition temperature,
providing a definitive experimental evidence for the two-band superconductivity
in MgB2. The experiments validate the role of k-dependent electron-phonon
coupling as the origin of multiple-gap superconductivity in MgB2.Comment: PDF file onl
- …