17 research outputs found

    Identification of Roquin-regulated mRNAs in T helper cells and molecular characterization of the Roquin-RNA interaction

    Get PDF

    Vitamin A controls the allergic response through T follicular helper cell as well as plasmablast differentiation

    Get PDF
    Background Vitamin A regulates the adaptive immune response and a modulatory impact on type I allergy is discussed. The cellular mechanisms are largely unknown. Objective To determine the vitamin A-responding specific lymphocyte reaction in vivo. Methods Antigen-specific B and T lymphocytes were analyzed in an adoptive transfer airway inflammation mouse model in response to 9-cis retinoic acid (9cRA) and after lymphocyte-specific genetic targeting of the receptor RAR alpha. Flow cytometry, quantitative PCR, next-generation sequencing, and specific Ig-ELISA were used to characterize the cells functionally. Results Systemic 9cRA profoundly enhanced the specific IgA-secreting B-cell frequencies in the lung tissue and serum IgA while reducing serum IgE concentrations. RAR alpha overexpression in antigen-specific B cells promoted differentiation into plasmablasts at the expense of germinal center B cells. In antigen-specific T cells, RAR alpha strongly promoted the differentiation of T follicular helper cells followed by an enhanced germinal center response. Conclusions 9cRA signaling via RAR alpha impacts the allergen-specific immunoglobulin response directly by the differentiation of B cells and indirectly by promoting T follicular helper cells

    Stable lines and clones of long-term proliferating normal, genetically unmodified murine common lymphoid progenitors.

    Get PDF
    Common lymphoid progenitors (CLPs) differentiate to T and B lymphocytes, dendritic cells, natural killer cells, and innate lymphoid cells. Here, we describe culture conditions that, for the first time, allow the establishment of lymphoid-restricted, but uncommitted, long-term proliferating CLP cell lines and clones from a small pool of these cells from normal mouse bone marrow, without any genetic manipulation. Cells from more than half of the cultured CLP clones could be induced to differentiate to T, B, natural killer, dendritic, and myeloid cells in vitro. Cultured, transplanted CLPs transiently populate the host and differentiate to all lymphoid subsets, and to myeloid cells in vivo. This simple method to obtain robust numbers of cultured noncommitted CLPs will allow studies of cell-intrinsic and environmentally controlled lymphoid differentiation programs. If this method can be applied to human CLPs, it will provide new opportunities for cell therapy of patients in need of myeloid-lymphoid reconstitution

    MicroRNA-31 Reduces the Motility of Proinflammatory T Helper 1 Lymphocytes

    Get PDF
    Proinflammatory type 1 T helper (Th1) cells are enriched in inflamed tissues and contribute to the maintenance of chronic inflammation in rheumatic diseases. Here we show that the microRNA- (miR-) 31 is upregulated in murine Th1 cells with a history of repeated reactivation and in memory Th cells isolated from the synovial fluid of patients with rheumatic joint disease. Knock-down of miR-31 resulted in the upregulation of genes associated with cytoskeletal rearrangement and motility and induced the expression of target genes involved in T cell activation, chemokine receptor– and integrin-signaling. Accordingly, inhibition of miR-31 resulted in increased migratory activity of repeatedly activated Th1 cells. The transcription factors T-bet and FOXO1 act as positive and negative regulators of T cell receptor (TCR)–mediated miR-31 expression, respectively. Taken together, our data show that a gene regulatory network involving miR-31, T-bet, and FOXO1 controls the migratory behavior of proinflammatory Th1 cells

    The miR-221/222 cluster regulates hematopoietic stem cell quiescence and multipotency by suppressing both Fos/AP-1/IEG pathway activation and stress-like differentiation to granulocytes.

    No full text
    Throughout life, hematopoietic stem cells (HSCs), residing in bone marrow (BM), continuously regenerate erythroid/megakaryocytic, myeloid, and lymphoid cell lineages. This steady-state hematopoiesis from HSC and multipotent progenitors (MPPs) in BM can be perturbed by stress. The molecular controls of how stress can impact hematopoietic output remain poorly understood. MicroRNAs (miRNAs) as posttranscriptional regulators of gene expression have been found to control various functions in hematopoiesis. We find that the miR-221/222 cluster, which is expressed in HSC and in MPPs differentiating from them, perturbs steady-state hematopoiesis in ways comparable to stress. We compare pool sizes and single-cell transcriptomes of HSC and MPPs in unperturbed or stress-perturbed, miR-221/222-proficient or miR-221/222-deficient states. MiR-221/222 deficiency in hematopoietic cells was induced in C57BL/6J mice by conditional vav-cre-mediated deletion of the floxed miR-221/222 gene cluster. Social stress as well as miR-221/222 deficiency, alone or in combination, reduced HSC pools 3-fold and increased MPPs 1.5-fold. It also enhanced granulopoisis in the spleen. Furthermore, combined stress and miR-221/222 deficiency increased the erythroid/myeloid/granulocytic precursor pools in BM. Differential expression analyses of single-cell RNAseq transcriptomes of unperturbed and stressed, proficient HSC and MPPs detected more than 80 genes, selectively up-regulated in stressed cells, among them immediate early genes (IEGs). The same differential single-cell transcriptome analyses of unperturbed, miR-221/222-proficient with deficient HSC and MPPs identified Fos, Jun, JunB, Klf6, Nr4a1, Ier2, Zfp36-all IEGs-as well as CD74 and Ly6a as potential miRNA targets. Three of them, Klf6, Nr4a1, and Zfp36, have previously been found to influence myelogranulopoiesis. Together with increased levels of Jun, Fos forms increased amounts of the heterodimeric activator protein-1 (AP-1), which is known to control the expression of the selectively up-regulated expression of the IEGs. The comparisons of single-cell mRNA-deep sequencing analyses of socially stressed with miR-221/222-deficient HSC identify 5 of the 7 Fos/AP-1-controlled IEGs, Ier2, Jun, Junb, Klf6, and Zfp36, as common activators of HSC from quiescence. Combined with stress, miR-221/222 deficiency enhanced the Fos/AP-1/IEG pathway, extended it to MPPs, and increased the number of granulocyte precursors in BM, inducing selective up-regulation of genes encoding heat shock proteins Hspa5 and Hspa8, tubulin-cytoskeleton-organizing proteins Tuba1b, Tubb 4b and 5, and chromatin remodeling proteins H3f3b, H2afx, H2afz, and Hmgb2. Up-regulated in HSC, MPP1, and/or MPP2, they appear as potential regulators of stress-induced, miR-221/222-dependent increased granulocyte differentiation. Finally, stress by serial transplantations of miR-221/222-deficient HSC selectively exhausted their lymphoid differentiation capacities, while retaining their ability to home to BM and to differentiate to granulocytes. Thus, miR-221/222 maintains HSC quiescence and multipotency by suppressing Fos/AP-1/IEG-mediated activation and by suppressing enhanced stress-like differentiation to granulocytes. Since miR-221/222 is also expressed in human HSC, controlled induction of miR-221/222 in HSC should improve BM transplantations

    Specific microbiota enhances intestinal IgA levels by inducing TGF‐ÎČ in T follicular helper cells of Peyer's patches in mice

    Get PDF
    In humans and mice, mucosal immune responses are dominated by IgA antibodies and the cytokine TGF-ÎČ, suppressing unwanted immune reactions but also targeting Ig class switching to IgA. It had been suggested that eosinophils promote the genera- tion and maintenance of mucosal IgA-expressing plasma cells. Here, we demonstrate that not eosinophils, but specific bacteria determine mucosal IgA production. Co-housing of eosinophil-deficient mice with mice having high intestinal IgA levels, as well as the intentional microbiota transfer induces TGF-ÎČ expression in intestinal T follicular helper cells, thereby promoting IgA class switching in Peyer’s patches, enhancing IgA+ plasma cell numbers in the small intestinal lamina propria and levels of mucosal IgA. We show that bacteria highly enriched for the genus Anaeroplasma are sufficient to induce these changes and enhance IgA levels when adoptively transferred. Thus, specific members of the intestinal microbiota and not the microbiota as such regulate gut homeostasis, by promoting the expression of immune-regulatory TGF-ÎČ and of mucosal IgA
    corecore