2 research outputs found

    The Human Host Defense Peptide LL-37 Overexpressed in Lung Cell Lines by Methanolic Extract of Valeriana officinalis

    Get PDF
    The present study investigated the effects of valerian methanolic extract and valerenic acid on the expression of LL-37 gene and protein in A549 and MRC5 line cells. After preparing Valerian seeds, sowing them in March 2020, and harvesting the rhizome in October 2020, the extract was prepared from the valerian rhizome by maceration method. Valerian acid content was determined using high performance liquid chromatography (HPLC). Two cell lines (A549 and MRC-5) were used to study the effects of valerian extract, and the MTT test was used to evaluate cell viability. The expression of LL-37 mRNA and protein was assessed by Real-Time PCR and western blot, respectively. In vivo safety assessments and histopathological analysis were also conducted. Data was analyzed by Graphpad Prism 8 software. Valerian methanolic extract and valerenic acid upregulated the LL-37 mRNA and protein expression in both treated cell lines. Valerenic acid showed a greater effect on upregulating LL-37 expression than valerian methanolic extract. A549 cells were more sensitive to valerian methanolic extract compared to MRC5 cells, and its cell viability was reduced. Furthermore, liver and kidney-related safety assessments showed that valerian methanolic extract had no toxic effects. In general, it was concluded that the methanolic extract of valerian as well as the resulting valerenic acid as the most important component of the extract has the ability to upregulate LL-37expression. Therefore, methanolic extract of valerian and valerenic acid can be considered for improving the immune system

    Evaluation of the Antimicrobial and Cytotoxic Activity of Cultivated Valeriana officinalis:

    Get PDF
    Drug resistance refers to the reduction in the effectiveness of a drug in treating a disease or improving the stability of symptoms. It can occur in various types of pathogens, including bacteria, parasites, viruses, fungi, and cancer cells. This experimental study was conducted between 2018 and 2019 in an area with an annual mean rainfall of 130mm. The sowing date was September 10th, and 2-3 seeds were planted per cell. MTT assays (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) were used to determine the percentage of viability in adenocarcinomic human alveolar basal epithelial cells (A549) and Medical Research Council cell strain 5 (MRC5) cell lines incubated with methanolic extract and valerenic acid for 48 hr. The methanol extract was prepared by adding 1000 mg of rhizomes to 100 mL of methanol, followed by sonication for 30 minutes, stirring, and centrifugation at 4000 rpm for 10 minutes. Minimum inhibitory concentration (MIC) and agar gel diffusion were used to assess the antimicrobial activity of the methanol extract of valerian against two important pathogenic microorganisms, Staphylococcus aureus and Candida albicans. However, valerenic acid did not reveal antimicrobial activity at doses of 200, 100, 50, 25, 12.5, and 6.25 µg/mL. The methanolic extract of V. officinalis contains high quantities of sesquiterpenes, specifically valerenic acid, which did not show cytotoxic effects on A549 and MRC5 cell lines as assessed by the MTT assay. In vivo evaluation of the extract in mice and guinea pigs did not reveal any toxic effects based on histopathological and clinical symptom assessments. Our study confirms that Valeriana officinalis has dose-dependent potential to improve existing treatment approaches for Staphylococcus aureus and Candida albicans infections
    corecore