31 research outputs found

    トピックス 5号 2001年8月号

    Get PDF
    Background Few hospitals in high malaria endemic countries in Africa have the diagnostic capacity for clinically distinguishing acute bacterial meningitis (ABM) from cerebral malaria (CM). As a result, empirical use of antibiotics is necessary. A biochemical marker of ABM would facilitate precise clinical diagnosis and management of these infections and enable rational use of antibiotics. Methods We used label-free protein quantification by mass spectrometry to identify cerebrospinal fluid (CSF) markers that distinguish ABM (n=37) from CM (n=22) in Kenyan children. Fold change (FC) and false discovery rates (FDR) were used to identify differentially expressed proteins. Subsequently, potential biomarkers were assessed for their ability to discriminate between ABM and CM using receiver operating characteristic (ROC) curves. Results The host CSF proteome response to ABM (Haemophilus influenza and Streptococcus pneumoniae) is significantly different to CM. Fifty two proteins were differentially expressed (FDR&lt;0.01, Log FC≥2), of which 83% (43/52) were upregulated in ABM compared to CM. Myeloperoxidase and lactotransferrin were present in 37 (100%) and 36 (97%) of ABM cases, respectively, but absent in CM (n=22). Area under the ROC curve (AUC), sensitivity, and specificity were assessed for myeloperoxidase (1, 1, and 1; 95% CI, 1-1) and lactotransferrin (0.98, 0.97, and 1; 95% CI, 0.96-1). Conclusion Myeloperoxidase and lactotransferrin have a high potential to distinguish ABM from CM and thereby improve clinical management. Their validation requires a larger cohort of samples that includes other bacterial aetiologies of ABM.</p

    Field-adapted sampling of whole blood to determine the levels of amodiaquine and its metabolite in children with uncomplicated malaria treated with amodiaquine plus artesunate combination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemisinin combination therapy (ACT) has been widely adopted as first-line treatment for uncomplicated falciparum malaria. In Uganda, amodiaquine plus artesunate (AQ+AS), is the alternative first-line regimen to Coartem<sup>® </sup>(artemether + lumefantrine) for the treatment of uncomplicated falciparum malaria. Currently, there are few field-adapted analytical techniques for monitoring amodiaquine utilization in patients. This study evaluates the field applicability of a new method to determine amodiaquine and its metabolite concentrations in whole blood dried on filter paper.</p> <p>Methods</p> <p>Twelve patients aged between 1.5 to 8 years with uncomplicated malaria received three standard oral doses of AQ+AS. Filter paper blood samples were collected before drug intake and at six different time points over 28 days period. A new field-adapted sampling procedure and liquid chromatographic method was used for quantitative determination of amodiaquine and its metabolite in whole blood.</p> <p>Results</p> <p>The sampling procedure was successively applied in the field. Amodiaquine could be quantified for at least three days and the metabolite up to 28 days. All parasites in all the 12 patients cleared within the first three days of treatment and no adverse drug effects were observed.</p> <p>Conclusion</p> <p>The methodology is suitable for field studies. The possibility to determine the concentration of the active metabolite of amodiaquine up to 28 days suggested that the method is sensitive enough to monitor amodiaquine utilization in patients. Amodiaquine plus artesunate seems effective for treatment of falciparum malaria.</p

    Serologic responses to the PfEMP1 DBL-CIDR head structure may be a better indicator of malaria exposure than those to the DBL-α tag

    Get PDF
    BackgroundPlasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR).MethodsA protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6&nbsp;years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season.ResultsMalian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure.ConclusionsLarger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure

    Review Article: blood-brain barrier in falciparum malaria.

    No full text
    Plasmodium falciparum malaria is the most important parasitic disease infecting the central nervous system of humans worldwide. The pathogenesis of the neurological complications of falciparum malaria remains unclear. In particular, how do asexual parasites confined to the vascular space of the brain cause neuronal impairment? The evidence for a breakdown in the blood-brain barrier (BBB) is conflicting. In some animal models of malaria, there is evidence of breakdown of the BBB, but the data from humans suggests the BBB is mildly impaired only, with few morphological changes. Whether these changes in the BBB are sufficient to account for the neurological complications remains to be determined

    Migration and career success: testing a time-sequenced model

    Get PDF
    Purpose – The paper seeks to determine whether different aspects of migrant pre-migration characteristics (human capital and motivation to migrate) and post-migration behaviour (social integration and career self-management) predict migrants' post-migration career success. Design/methodology/approach – The research employed a survey questionnaire applied to a sample of 210 migrants who had migrated from Sri Lanka to New Zealand. Twenty-three independent and three dependent (career success – objective and subjective) variables were measured. Sequential multiple regression analysis was applied, mirroring the time-sequenced theory of career development. Findings – Overall, migrants' occupational status had declined markedly following migration. Variables representing human capital, social integration and career self-management perspectives all contributed substantially to explaining variances in career success, especially objective career success, but motivation to migrate did not. Human capital variables were especially influential in determining pre-migration success, acculturation in the host country and education in the host country in post-migration success. Effects of career self-management behaviours on success were relatively small. Research limitations/implications – A limitation is the cross-sectional design, and possible non-generalisability beyond a single migrant group and host country. Practical implications – The paper discusses implications for migrants, policy makers and future research. Originality/value – Migration, and interest in research on migrants' careers, is growing. This paper applies a wide range of predictor variables and a logical causal model to predicting migrant career success, indicates significant effects, and points to positive actions that may be taken by government, organisations and migrants

    Determination of paraldehyde by gas chromatography in whole blood from children.

    No full text
    A rapid, sensitive and selective gas chromatographic method with flame ionization detection was developed for the determination of paraldehyde in small blood samples taken from children. Whole blood samples (300 microl) collected in a 3 ml Wheaton glass sample vial were spiked with acetone (internal standard: 15 ng) followed by addition of concentrated hydrochloric acid. The mixture was heated in the sealed airtight sample vial in a water bath (96 Celsius; 5 min) to depolymerize paraldehyde to acetaldehyde. A 2 ml aliquot of the headspace was analyzed by gas chromatography with flame ionization detector using a stainless steel column (3 m x 4 mm i.d.) packed with 10% Carbowax 20 M/ 2% KOH on 80/100 Chromosorb WAW. Calibration curves were linear from 1.0-20 microg (r2&gt;0.99). The limit of detection was 1.5 microg/ml, while relative mean recoveries at 2 and 18 microg were 105.6 +/- 8.4 and 101.2 +/- 5.9%, respectively (n = 10 for each level). Intra- and inter-assay relative standard deviations at 2, 10 and 18 microg were &lt;15%. There was no interference from other drugs concurrently used in children with severe malaria, such as anticonvulsants (diazepam, phenytoin, phenobarbitone), antipyretics/analgesics (paracetamol and salicylate), antibiotics (gentamicin, chloramphenicol, benzyl penicillin) and antimalarials (chloroquine, quinine, proguanil, cycloguanil, pyrimethamine and sulfadoxine). The method was successfully applied for pharmacokinetic studies of paraldehyde in children with convulsions associated with severe malaria

    Antigenic cartography of immune responses to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)

    No full text
    Naturally acquired clinical immunity to Plasmodium falciparum is partly mediated by antibodies directed at parasite-derived antigens expressed on the surface of red blood cells which mediate disease and are extremely diverse. Unlike children, adults recognize a broad range of variant surface antigens (VSAs) and are protected from severe disease. Though crucial to the design and feasibility of an effective malaria vaccine, it is not yet known whether immunity arises through cumulative exposure to each of many antigenic types, cross-reactivity between antigenic types, or some other mechanism. In this study, we measured plasma antibody responses of 36 children with symptomatic malaria to a diverse panel of 36 recombinant proteins comprising part of the DBLα domain (the 'DBLα-tag') of PfEMP1, a major class of VSAs. We found that although plasma antibody responses were highly specific to individual antigens, serological profiles of responses across antigens fell into one of just two distinct types. One type was found almost exclusively in children that succumbed to severe disease (19 out of 20) while the other occurred in all children with mild disease (16 out of 16). Moreover, children with severe malaria had serological profiles that were narrower in antigen specificity and shorter-lived than those in children with mild malaria. Borrowing a novel technique used in influenza-antigenic cartography-we mapped these dichotomous serological profiles to amino acid sequence variation within a small sub-region of the PfEMP1 DBLα domain. By applying our methodology on a larger scale, it should be possible to identify epitopes responsible for eliciting the protective version of serological profiles to PfEMP1 thereby accelerating development of a broadly effective anti-disease malaria vaccine

    CD4+ T cell responses to the Plasmodium falciparum erythrocyte membrane protein 1 in children with mild malaria.

    Get PDF
    The immune response against the variant surface Ag Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key component of clinical immunity against malaria. We have investigated the development and maintenance of CD4(+) T cell responses to a small semiconserved area of the Duffy binding-like domain (DBL)α-domain of PfEMP1, the DBLα-tag. Young children were followed up longitudinally, and parasites and PBMCs were isolated from 35 patients presenting with an acute case of uncomplicated malaria. The DBLα-tag from the PfEMP1 dominantly expressed by the homologous parasite isolate was cloned and expressed as recombinant protein. The recombinant DBLα-tag was used to activate PBMCs collected from each acute episode and from an annual cross-sectional survey performed after the acute malaria episode. In this article, we report that CD4(+) T cell responses to the homologous DBLα-tag were induced in 75% of the children at the time of the acute episode and in 62% of the children at the following cross-sectional survey on average 235 d later. Furthermore, children who had induced DBLα-tag-specific CD4(+)IL-4(+) T cells at the acute episode remained episode free for longer than children who induced other types of CD4(+) T cell responses. These results suggest that a wide range of DBLα-tag-specific CD4(+) T cell responses were induced in children with mild malaria and, in the case of CD4(+)IL-4(+) T cell responses, were associated with protection from clinical episodes
    corecore