8 research outputs found
Acute kidney injury in critically Ill children and young adults with suspected SARS-CoV2 infection
This article is made available for unrestricted research re-use and secondary analysis in any form or be any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background: We aimed to study the association of suspected versus confirmed infection with the novel SARS-CoV2 virus with the prevalence of acute kidney injury (AKI) in critically ill children.
Methods: Sequential point-prevalence study of children and young adults aged 7 days to 25 years admitted to intensive care units under investigation for SARS-CoV2 infection. AKI was staged in the first 14 days of enrollment using KDIGO creatinine-based staging. SARS-CoV2 positive (CONFIRMED) were compared to SUSPECTED (negative or unknown). Outcome data was censored at 28-days.
Results: In 331 patients of both sexes, 179 (54.1%) were CONFIRMED, 4.2% (14) died. AKI occurred in 124 (37.5%) and severe AKI occurred in 63 (19.0%). Incidence of AKI in CONFIRMED was 74/179 (41.3%) versus 50/152 (32.9%) for SUSPECTED; severe AKI occurred in 35 (19.6%) of CONFIRMED and 28 (18.4%) of SUSPECTED. Mortality was 6.2% (n = 11) in CONFIRMED, but 9.5% (n = 7) in those CONFIRMED with AKI. On multivariable analysis, only Hispanic ethnicity (relative risk 0.5, 95% CI 0.3-0.9) was associated with less AKI development among those CONFIRMED.
Conclusions: AKI and severe AKI occur commonly in critically ill children with SARS-CoV2 infection, more than double the historical standard. Further investigation is needed during this continuing pandemic to describe and refine the understanding of pediatric AKI epidemiology and outcomes.
Trial registration: NCT01987921.
Impact: What is the key message of the article? AKI occurs in children exposed to the novel SARS-CoV2 virus at high prevalence (~40% with some form of AKI and 20% with severe AKI). What does it add to the existing literature? Acute kidney injury (AKI) occurs commonly in adult patients with SARS-CoV2 (COVID), very little data describes the epidemiology of AKI in children exposed to the virus. What is the impact? A pediatric vaccine is not available; thus, the pandemic is not over for children. Pediatricians will need to manage significant end-organ ramifications of the novel SARS-CoV2 virus including AKI
Association of Fluid Balance With Short- and Long-term Respiratory Outcomes in Extremely Premature Neonates: A Secondary Analysis of a Randomized Clinical Trial
Importance: Extremely low gestational age neonates are at risk of disorders of fluid balance (FB), defined as change in fluid weight over a specific period. Few data exist on the association between FB and respiratory outcomes in this population.
Objective: To describe FB patterns and evaluate the association of FB with respiratory outcomes in a cohort of extremely low gestational age neonates.
Design, setting, and participants: This study is a secondary analysis of the Preterm Erythropoietin Neuroprotection Trial (PENUT), a phase 3 placebo-controlled randomized clinical trial of erythropoietin in extremely premature neonates conducted in 30 neonatal intensive care units in the US from December 1, 2013, to September 31, 2016. This analysis included 874 extremely premature neonates born at 24 to 27 weeks' gestation who were enrolled in the PENUT study. Secondary analysis was performed in November 2021.
Exposures: Primary exposure was peak FB during the first 14 postnatal days. The FB was calculated as percent change in weight from birth weight (BW) as a surrogate for FB.
Main outcomes and measures: The primary outcome was mechanical ventilation on postnatal day 14. The secondary outcome was a composite of severe bronchopulmonary dysplasia (BPD) or death.
Results: A total of 874 neonates (449 [51.4%] male; mean [SD] BW, 801 [188] g; 187 [21.4%] Hispanic, 676 [77.3%] non-Hispanic, and 11 [1.3%] of unknown ethnicity; 226 [25.9%] Black, 569 [65.1%] White, 51 [5.8%] of other race, and 28 [3.2%] of unknown race) were included in this analysis. Of these 874 neonates, 458 (52.4%) received mechanical ventilation on postnatal day 14, and 291 (33.3%) had severe BPD or had died. Median peak positive FB was 11% (IQR, 4%-20%), occurring on postnatal day 13 (IQR, 9-14). A total of 93 (10.6%) never decreased below their BW. Neonates requiring mechanical ventilation at postnatal day 14 had a higher peak FB compared with those who did not require mechanical ventilation (15% above BW vs 8% above BW, P < .001). On postnatal day 3, neonates requiring mechanical ventilation were more likely to have a higher FB (5% below BW vs 8% below BW, P < .001). The median time to return to BW was shorter in neonates who received mechanical ventilation (7 vs 8 days, P < .001) and those with severe BPD (7 vs 8 days, P < .001). After adjusting for confounding variables, for every 10% increase in peak FB during the first 14 postnatal days, there was 103% increased odds of receiving mechanical ventilation at postnatal day 14 (adjusted odds ratio, 2.03; 95% CI, 1.64-2.51).
Conclusions and relevance: In this secondary analysis of a randomized clinical trial, peak FB was associated with mechanical ventilation on postnatal day 14 and severe BPD or death. Fluid balance in the first 3 postnatal days and time to return to BW may be potential targets to help guide management and improve respiratory outcomes
Acute Kidney Injury Defined by Fluid-Corrected Creatinine in Premature Neonates
Importance: Acute kidney injury (AKI) and disordered fluid balance are common in premature neonates; a positive fluid balance dilutes serum creatinine, and a negative fluid balance concentrates serum creatinine, both of which complicate AKI diagnosis. Correcting serum creatinine for fluid balance may improve diagnosis and increase diagnostic accuracy for AKI.
Objective: To determine whether correcting serum creatinine for fluid balance would identify additional neonates with AKI and alter the association of AKI with short-term and long-term outcomes.
Design, setting, and participants: This study was a post hoc cohort analysis of the Preterm Erythropoietin Neuroprotection Trial (PENUT), a phase 3, randomized clinical trial of erythropoietin, conducted at 19 academic centers and 30 neonatal intensive care units in the US from December 2013 to September 2016. Participants included extremely premature neonates born at less than 28 weeks of gestation. Data analysis was conducted in December 2022.
Exposure: Diagnosis of fluid-corrected AKI during the first 14 postnatal days, calculated using fluid-corrected serum creatinine (defined as serum creatinine multiplied by fluid balance [calculated as percentage change from birth weight] divided by total body water [estimated 80% of birth weight]).
Main outcomes and measures: The primary outcome was invasive mechanical ventilation on postnatal day 14. Secondary outcomes included death, hospital length of stay, and severe bronchopulmonary dysplasia (BPD). Categorical variables were analyzed by proportional differences with the χ2 test or Fisher exact test. The t test and Wilcoxon rank sums test were used to compare continuous and ordinal variables, respectively. Odds ratios (ORs) and 95% CIs for the association of exposure with outcomes of interest were estimated using unconditional logistic regression models.
Results: A total of 923 premature neonates (479 boys [51.9%]; median [IQR] birth weight, 801 [668-940] g) were included, of whom 215 (23.3%) received a diagnosis of AKI using uncorrected serum creatinine. After fluid balance correction, 13 neonates with AKI were reclassified as not having fluid-corrected AKI, and 111 neonates previously without AKI were reclassified as having fluid-corrected AKI (ie, unveiled AKI). Therefore, fluid-corrected AKI was diagnosed in 313 neonates (33.9%). Neonates with unveiled AKI were similar in clinical characteristics to those with AKI whose diagnoses were made with uncorrected serum creatinine. Compared with those without AKI, neonates with unveiled AKI were more likely to require ventilation (81 neonates [75.0%] vs 254 neonates [44.3%] and have longer hospital stays (median [IQR], 102 [84-124] days vs 90 [71-110] days). In multivariable analysis, a diagnosis of fluid-corrected AKI was associated with increased odds of adverse clinical outcomes, including ventilation (adjusted OR, 2.23; 95% CI, 1.56-3.18) and severe BPD (adjusted OR, 2.05; 95% CI, 1.15-3.64).
Conclusions and relevance: In this post hoc cohort study of premature neonates, fluid correction increased the number of premature neonates with a diagnosis of AKI and was associated with increased odds of adverse clinical outcomes, including ventilation and BPD. Failing to correct serum creatinine for fluid balance underestimates the prevalence and impact of AKI in premature neonates. Future studies should consider correcting AKI for fluid balance
Recommended from our members
Caffeine and kidney function at two years in former extremely low gestational age neonates
BackgroundExtremely low gestational age neonates (ELGANs) are at risk for chronic kidney disease. The long-term kidney effects of neonatal caffeine are unknown. We hypothesize that prolonged caffeine exposure will improve kidney function at 22-26 months. MethodsSecondary analysis of the Preterm Erythropoietin Neuroprotection Trial of neonates 30 mg albumin/g creatinine), or 'elevated blood pressure' (BP) >95th %tile. A general estimating equation logistic regression model stratified by bronchopulmonary dysplasia (BPD) status was used. Results598 participants had at least one kidney metric at follow up. Within the whole cohort, postmenstrual age of caffeine discontinuation was not associated with any abnormal measures of kidney function at 2 years. In the stratified analysis, for each additional week of caffeine, the no BPD group had a 21% decreased adjusted odds of eGFR <90 ml/min/1.73m(2) (aOR 0.78; CI 0.62-0.99) and the BPD group had a 15% increased adjusted odds of elevated BP (aOR 1.15; CI: 1.05-1.25). ConclusionsLonger caffeine exposure during the neonatal period is associated with differential kidney outcomes at 22-26 months dependent on BPD status. ImpactIn participants born <28 weeks' gestation, discontinuation of caffeine at a later post menstrual age was not associated with abnormal kidney outcomes at 22-26 months corrected age.When assessed at 2 years of age, later discontinuation of caffeine in children born <28 weeks' gestation was associated with a greater risk of reduced eGFR in those without a history of BPD and an increased odds of hypertension in those with a history of BPD.More work is necessary to understand the long-term impact of caffeine on the developing kidney
Pediatric AKI in the real world: changing outcomes through education and advocacy-a report from the 26th Acute Disease Quality Initiative (ADQI) consensus conference
Background: Acute kidney injury (AKI) is independently associated with increased morbidity and mortality across the life course, yet care for AKI remains mostly supportive. Raising awareness of this life-threatening clinical syndrome through education and advocacy efforts is the key to improving patient outcomes. Here, we describe the unique roles education and advocacy play in the care of children with AKI, discuss the importance of customizing educational outreach efforts to individual groups and contexts, and highlight the opportunities created through innovations and partnerships to optimize lifelong health outcomes.
Methods: During the 26th Acute Disease Quality Initiative (ADQI) consensus conference, a multidisciplinary group of experts discussed the evidence and used a modified Delphi process to achieve consensus on recommendations on AKI research, education, practice, and advocacy in children.
Results: The consensus statements developed in response to three critical questions about the role of education and advocacy in pediatric AKI care are presented here along with a summary of available evidence and recommendations for both clinical care and research.
Conclusions: These consensus statements emphasize that high-quality care for patients with AKI begins in the community with education and awareness campaigns to identify those at risk for AKI. Education is the key across all healthcare and non-healthcare settings to enhance early diagnosis and develop mitigation strategies, thereby improving outcomes for children with AKI. Strong advocacy efforts are essential for implementing these programs and building critical collaborations across all stakeholders and settings
Recommended from our members
Worldwide Exploration of Renal Replacement Outcomes Collaborative in Kidney Disease (WE-ROCK)
IntroductionContinuous renal replacement therapy (CRRT) is used for the symptomatic management of acute kidney injury (AKI) and fluid overload (FO). Contemporary reports on pediatric CRRT are small and single center in design. Large international studies evaluating CRRT practice and outcomes are lacking. Herein, we describe the design of a multinational collaborative.MethodsThe Worldwide Exploration of Renal Replacement Outcomes Collaborative in Kidney Disease (WE-ROCK) is an international collaborative of pediatric specialists whose mission is to improve short- and long-term outcomes of children treated with CRRT. The aims of this multicenter retrospective study are to describe the epidemiology, liberation patterns, association of fluid balance and timing of CRRT initiation, and CRRT prescription with outcomes.ResultsWe included children (n = 996, 0-25 years) admitted to an intensive care unit (ICU) and treated with CRRT for AKI or FO at 32 centers (in 7 countries) from 2018 to 2021. Demographics and clinical characteristics before CRRT initiation, during the first 7 days of both CRRT, and liberation were collected. Outcomes include the following: (i) major adverse kidney events at 90 days (mortality, dialysis dependence, and persistent kidney dysfunction), and (ii) functional outcomes (functional stats scale).ConclusionThe retrospective WE-ROCK study represents the largest international registry of children receiving CRRT for AKI or FO. It will serve as a broad and invaluable resource for the field of pediatric critical care nephrology that will improve our understanding of practice heterogeneity and the association of CRRT with clinical and patient-centered outcomes. This will generate preliminary data for future interventional trials in this area
Recommended from our members
Kidney Health Monitoring in Neonatal Intensive Care Unit Graduates A Modified Delphi Consensus Statement
Importance Kidney disease is common in infants admitted to the neonatal intensive care unit (NICU). Despite the risk of chronic kidney disease (CKD) in infants discharged from the NICU, neither evidence- nor expert-based recommendations exist to guide clinical care after discharge. Objective To develop recommendations for risk stratification and kidney health monitoring among infants after discharge from the NICU. Evidence Review At the National Institute of Health–supported Consensus Workshop to Address Kidney Health in Neonatal Intensive Care Unit Graduates meeting conducted in February 2024, a panel of 51 neonatal nephrology experts focused on 3 at-risk groups: (1) preterm infants, (2) critically ill infants with acute kidney injury (AKI), and (3) infants with critical cardiac disease. Using established modified Delphi processes, workgroups derived consensus recommendations. Findings In this modified Delphi consensus statement, the panel developed 10 consensus recommendations, identified gaps in knowledge, and prioritized areas of future research. Principal suggestions include risk stratification at time of hospital discharge, family and clinician education and counseling for subsequent kidney health follow-up, and blood pressure assessment as part of outpatient care. Conclusions and Relevance Preterm infants, critically ill infants with AKI, and infants with critical cardiac disease are at increased risk of CKD. We recommend (1) risk assessment at the time of discharge, (2) clinician and family education, and (3) kidney health assessments based on the degree of risk. Future work should focus on improved risk stratification, identification of early kidney dysfunction, and development of interventions to improve long-term kidney health
Recommended from our members