201 research outputs found

    Is nonangiogenesis a novel pathway for cancer progression? A study using 3-dimensional tumour reconstructions

    Get PDF
    The nonangiogenic lung tumour is characterized by neoplastic cells co-opting the pre-existent vasculature and filling the alveoli space. 3-Dimensional reconstruction of the tumour reveals that this particular tumour progresses without neovascularization and there is no major destruction of the lung's architectural integrity

    Female genital mutilation of a karyotypic male presenting as a female with delayed puberty

    Get PDF
    BACKGROUND: Female genital mutilation (FGM) is commonly practiced mainly in a belt reaching from East to West Africa north of the equator. The practice is known across socio-economic classes and among different ethnic, religious, and cultural groups. Few studies have been appropriately designed to measure the health effects of FGM. However, the outcome of FGM on intersex individuals has never been discussed before. CASE PRESENTATION: The patient first presented as a female with delayed puberty. Hormonal analysis revealed a normal serum prolactin level of 215 Mu/L, a low FSH of 0.5 Mu/L, and a low LH of 1.1 Mu/L. Type IV FGM (Pharaonic circumcision) had been performed during childhood. Chromosomal analysis showed a 46, XY karyotype and ultrasonography verified a soft tissue structure in the position of the prostate. CONCLUSION: FGM pose a threat to the diagnosis and management of children with abnormal genital development in the Sudan and similar societies

    Binomial Mitotic Segregation of MYCN-Carrying Double Minutes in Neuroblastoma Illustrates the Role of Randomness in Oncogene Amplification

    Get PDF
    BACKGROUND: Amplification of the oncogene MYCN in double minutes (DMs) is a common finding in neuroblastoma (NB). Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development. PRINCIPAL FINDINGS: We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN) copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers. CONCLUSION: Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection

    Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability

    Get PDF
    APE1 (Ref-1) is an essential human protein involved in DNA damage repair and regulation of transcription. Although the cellular functions and biochemical properties of APE1 are well characterized, the mechanism involved in regulation of the cellular levels of this important DNA repair/transcriptional regulation enzyme, remains poorly understood. Using an in vitro ubiquitylation assay, we have now purified the human E3 ubiquitin ligase UBR3 as a major activity that polyubiquitylates APE1 at multiple lysine residues clustered on the N-terminal tail. We further show that a knockout of the Ubr3 gene in mouse embryonic fibroblasts leads to an up-regulation of the cellular levels of APE1 protein and subsequent genomic instability. These data propose an important role for UBR3 in the control of the steady state levels of APE1 and consequently error free DNA repair

    Stabilization of Dicentric Translocations through Secondary Rearrangements Mediated by Multiple Mechanisms in S. cerevisiae

    Get PDF
    The gross chromosomal rearrangements (GCRs) observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instabilityThe structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ)-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR)-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR.HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers

    A case of Cornelia de Lange syndrome from Sudan

    Get PDF
    BACKGROUND: Brachmann de Lange syndrome (BDLS) is a multiple congenital anomaly syndrome characterized by a distinctive facial appearance, prenatal and postnatal growth deficiency, psychomotor delay, behavioral problems, and malformations of the upper extremities. CASE PRESENTATION: Here we present for the first time a case of BDLS from Sudan, a 7-month-old female infant, who was referred as a case of malnutrition. The patient was from a Sudanese western tribe. Clinical investigation showed that the child was a classical case of BDLS, but with some additional clinical findings not previously reported including crowded ribs and tied tongue. CONCLUSION: Reporting BDLS cases of different ethnic backgrounds could add nuances to the phenotypic description of the syndrome and be helpful in diagnosis

    Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived cultures

    Get PDF
    Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived culturesHuman motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50) 1-2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.This work was funded by Project A.L.S., P2ALS and NYSTEM grant number CO24415. The work of N.J.L. was supported by the Portuguese Foundation for Science and Technology SFRH/BD/33421/2008 and the Luso-American Development Foundation. B.J.-K. was supported by the National Institute of Neurological Disorders and Stroke (NINDS). L.R. was supported by the Swedish Brain Foundation/Hjarnfonden. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Glial Progenitor-Like Phenotype in Low-Grade Glioma and Enhanced CD133-Expression and Neuronal Lineage Differentiation Potential in High-Grade Glioma

    Get PDF
    Background: While neurosphere-as well as xenograft tumor-initiating cells have been identified in gliomas, the resemblance between glioma cells and neural stem/progenitor cells as well as the prognostic value of stem/progenitor cell marker expression in glioma are poorly clarified. Methodology/Principal Findings: Viable glioma cells were characterized for surface marker expression along the glial genesis hierarchy. Six low-grade and 17 high-grade glioma specimens were flow-cytometrically analyzed for markers characteristics of stem cells (CD133); glial progenitors (PDGFR alpha, A2B5, O4, and CD44); and late oligodendrocyte progenitors (O1). In parallel, the expression of glial fibrillary acidic protein (GFAP), synaptophysin and neuron-specific enolase (NSE) was immunohistochemically analyzed in fixed tissue specimens. Irrespective of the grade and morphological diagnosis of gliomas, glioma cells concomitantly expressed PDGFRa, A2B5, O4, CD44 and GFAP. In contrast, O1 was weakly expressed in all low-grade and the majority of high-grade glioma specimens analyzed. Co-expression of neuronal markers was observed in all high-grade, but not low-grade, glioma specimens analyzed. The rare CD133 expressing cells in low-grade glioma specimens typically co-expressed vessel endothelial marker CD31. In contrast, distinct CD133 expression profiles in up to 90% of CD45-negative glioma cells were observed in 12 of the 17 high-grade glioma specimens and the majority of these CD133 expressing cells were CD31 negative. The CD133 expression correlates inversely with length of patient survival. Surprisingly, cytogenetic analysis showed that gliomas contained normal and abnormal cell karyotypes with hitherto indistinguishable phenotype. Conclusions/Significance: This study constitutes an important step towards clarification of lineage commitment and differentiation blockage of glioma cells. Our data suggest that glioma cells may resemble expansion of glial lineage progenitor cells with compromised differentiation capacity downstream of A2B5 and O4 expression. The concurrent expression of neuronal markers demonstrates that high-grade glioma cells are endowed with multi-lineage differentiation potential in vivo. Importantly, enhanced CD133 expression marks a poor prognosis in gliomas
    • …
    corecore