541 research outputs found

    Design of the Annular Suspension and Pointing System (ASPS) (including design addendum)

    Get PDF
    The Annular Suspension and Pointing System is an experiment pointing mount designed for extremely precise 3 axis orientation of shuttle experiments. It utilizes actively controlled magnetic bearing to provide noncontacting vernier pointing and translational isolation of the experiment. The design of the system is presented and analyzed

    Antiradical activity of phenolic metabolites extracted from grapes of white and red Vitis vinifera L. cultivars

    Get PDF
    A diet rich in plant foods is strongly recommended for its beneficial effect on human health. In fact, plant secondary metabolites may exert various biological activities on mammalian cells. Among them, phenolics are excellent natural antioxidants able to rescue cell redox unbalance responsible for the onset of different pathologies. For these reasons, the present work was focused on the study of grape extracts obtained from eight different Italian Vitis vinifera cultivars, quite rare in Italian viticulture and not yet completely chemically characterized. For each preparation, total simple phenolic, flavonoidic and anthocyaninic content was measured through spectrophotometrical assays, while detailed biochemical profile was revealed by LC-MS analyses. In order to valorize the products of these varieties and increase our knowledge about their potential healthy role, the antioxidant power of the samples was evaluated by two different in vitro antiradical tests: DPPH and FRAP. Moreover, free radical scavenging properties of eleven grape pure compounds were investigated, with the aim to: a) compare their real antiradical property with the theoretical one; b) identify which one of them possessed the best bioactivity; c) understand how they might singularly contribute to the nutraceutical effect of the whole grapevine phytocomplex

    Ultrastructure and development of the floral nectary from Borago officinalis L. and phytochemical changes in its secretion

    Get PDF
    Although Boraginaceae have been classified as good sources of nectar for many insects, little is still known about their nectar and nectaries. Thus, in the present contribution, we investigated the nectar production dynamics and chemistry in Borago officinalis L. (borage or starflower), together with its potential interaction capacity with pollinators. A peak of nectar secretion (∼5.1 μL per flower) was recorded at anthesis, to decrease linearly during the following 9 days. In addition, TEM and SEM analyses were performed to understand ultrastructure and morphological changes occurring in borage nectary before and after anthesis, but also after its secretory phase. Evidence suggested that nectar was transported by the apoplastic route (mainly from parenchyma to epidermis) and then released essentially by exocytotic processes, that is a granulocrine secretion. This theory was corroborated by monitoring the signal of complex polysaccharides and calcium, respectively, via Thiéry staining and ESI/EELS technique. After the secretory phase, nectary underwent degeneration, probably through autophagic events and/or senescence induction. Furthermore, nectar (Nec) and other flower structures (i.e., sepals, gynoecia with nectaries, and petals) from borage were characterized by spectrophotometry and HPLC-DAD, in terms of plant secondary metabolites, both at early (E-) and late (L-) phase from anthesis. The content of phytochemicals was quantified and discussed for all samples, highlighting potential biological roles of these compounds in the borage flower (e.g., antimicrobial, antioxidant, staining effects). Surprisingly, a high significant accumulation of flavonoids was registered in L-Nec, with respect to E-Nec, indicating that this phenomenon might be functional and able to hide molecular (e.g., defence against pathogens) and/or ecological (e.g., last call for pollinators) purposes. Indeed, it is known that these plant metabolites influence nectar palatability, encouraging the approach of specialist pollinators, deterring nectar robbers, and altering the behaviour of insects

    Role of aiolos and ikaros in the antitumor and immunomodulatory activity of imids in multiple myeloma: better to lose than to find them

    Get PDF
    The Ikaros zing-finger family transcription factors (IKZF TFs) are important regulators of lymphocyte development and differentiation and are also highly expressed in B cell malignancies, including Multiple Myeloma (MM), where they are required for cancer cell growth and survival. Moreover, IKZF TFs negatively control the functional properties of many immune cells. Thus, the targeting of these proteins has relevant therapeutic implications in cancer. Indeed, accumulating evidence demonstrated that downregulation of Ikaros and Aiolos, two members of the IKZF family, in malignant plasma cells as well as in adaptative and innate lymphocytes, is key for the anti-mye-loma activity of Immunomodulatory drugs (IMiDs). This review is focused on IKZF TF-related pathways in MM. In particular, we will address how the depletion of IKZF TFs exerts cytotoxic effects on MM cells, by reducing their survival and proliferation, and concomitantly potentiates the antitumor immune response, thus contributing to therapeutic efficacy of IMiDs, a cornerstone in the treatment of this neoplasia

    Profile and potential bioactivity of the miRNome and metabolome expressed in Malva sylvestris L. leaf and flower

    Get PDF
    Malva sylvestris L. (common mallow) is a plant species widely used in phytotherapy and ethnobotanical practices since time immemorial. Characterizing the components of this herb might promote a better comprehension of its biological effects on the human body but also favour the identification of the molecular processes that occur in the plant tissues. Thus, in the present contribution, the scientific knowledge about the metabolomic profile of the common mallow was expanded. In particular, the phytocomplex of leaves and flowers from this botanical species and the extraction capacity of different concentrations of ethanol (i.e., 95%, 70%, 50%, and 0%; v/v in ddH2O) for it were investigated by spectrophotometric and chromatographic approaches. In detail, 95% ethanol extracts showed the worst capacity in isolating total phenols and flavonoids, while all the hydroalcoholic samples revealed a specific ability in purifying the anthocyanins. HPLC–DAD system detected and quantified 20 phenolic secondary metabolites, whose concentration in the several extracts depended on their own chemical nature and the percentage of ethanol used in the preparation. In addition, the stability of the purified phytochemicals after resuspension in pure ddH2O was also proved, considering a potential employment of them in biological/medical studies which include in vitro and in vivo experiments on mammalian models. Here, for the first time, the expressed miRNome in M. sylvestris was also defined by Next Generation Sequencing, revealing the presence of 33 microRNAs (miRNAs), 10 typical for leaves and 2 for flowers. Then, both plant and human putative mRNA targets for the detected miRNAs were predicted by bioinformatics analyses, with the aim to clarify the possible role of these small nucleic acids in the common mallow plant tissues and to try to understand if they could exert a potential cross-kingdom regulatory activity on the human health. Surprisingly, our investigations revealed that 19 miRNAs out of 33 were putatively able to modulate, in the plant cells, the expression of various chromosome scaffold proteins. In parallel, we found, in the human transcriptome, a total of 383 mRNAs involved in 5 fundamental mammalian cellular processes (i.e., apoptosis, senescence, cell-cycle, oxidative stress, and invasiveness) that theoretically could be bound and regulated by M. sylvestris miRNAs. The evidence collected in this work would suggest that the beneficial properties of the use of M. sylvestris, documented by the folk medicine, are probably linked to their content of miRNAs and not only to the action of phytochemicals (e.g., anthocyanins). This would open new perspectives about the possibility to develop gene therapies based on miRNAs isolated from medicinal plants, including M. sylvestris

    Characterization for biofilm-forming cyanobacteria for biomass and lipid production

    Get PDF
    Aims: This work reports on one of the first attempts to use biofilm-forming cyanobacteria for biomass and lipid production. Methods and Results: Three isolates of filamentous cyanobacteria were obtained from biofilms at different Italian sites and characterized by a polyphasic approach, involving microscopic observations, ecology and genetic diversity (studying the 16S rRNA gene). The isolates were grown in batch systems and in a semi-continuous flow incubator, specifically designed for biofilms development. Culture system affected biomass and lipid production, but did not influence the fatty acid profile. The composition of fatty acids was mainly palmitic acid (>50%) and less amounts of other saturated and monounsaturated fatty acids. Only two isolates contained two polyunsaturated fatty acids. Conclusions: Data obtained from the flow-lane incubator system would support a more economical and sustainable use of the benthic microorganisms for biomass production. The produced lipids contained fatty acids suitable for a high-quality biodiesel production, showing high proportions of saturated and monounsaturated fatty acids. Significance and Impact of the Study: Data seem promising when taking into account the savings in cost and time derived from easy procedures for biomass harvesting, especially when being able to obtain the co-production of other valuable by-products

    An Atypical Presentation of Primary Hyperparathyroidism in an Adolescent: A Case Report of Hypercalcaemia and Neuropsychiatric Symptoms Due to a Mediastinal Parathyroid Adenoma

    Get PDF
    Psychiatric disorders are rare clinical manifestations of hypercalcaemia in the pediatric population, are relatively more frequent during adolescence and are often overlooked in cases of severe hypercalcaemia. We described the case of a 17-year-old girl affected by anorexia nervosa, depression and self-harm with incidental detection of moderate hypercalcaemia. Clinical, laboratory and instrumental tests demonstrated that hypercalcaemia was secondary to primary hyperparathyroidism (PHPT) due to a mediastinal parathyroid adenoma in the thymic parenchyma. After parathyroidectomy with robot-assisted surgery, we observed the restoration of calcium and PTH levels in addition to an improvement in psychiatric symptoms. This case demonstrates that serum calcium concentration should be evaluated in adolescents with neurobehavioural symptoms and in cases of hypercalcaemia PHPT should be excluded. Surgery represents the cornerstone of the management of PHPT and may contribute to improving quality of life and psychological function in these patients. However, the complexity of neurological involvement in cases of hypercalcaemia due to PHPT requires further investigations to establish the real impact of this condition on the neurocognitive sphere

    Assessing molecular diversity among 87 species of the Quercus L. genus by RAPD markers

    Get PDF
    Oaks (Quercus sp.) are among the most ecologically and economically important woody Angiosperms of the northern hemisphere. Nowadays, the reduction of Quercus biodiversity is becoming a matter of global concern, and several oak species have been included in the IUCN Red List of Threatened Species. Consequently, characterization and preservation strategies for the oak germplasm are largely promoted. Thus, in this work, the genetic diversity existing among 87 different Quercus species was assessed using the RAPD markers, in order to better typify these specimens, to show the amazing DNA variability of this plant genus, and to confirm or infer new putative molecular correlations. Our data were discussed taking into consideration the phylogenetic and phylogeographic relationships previously proposed by the literature. In general, the obtained results corroborated that the evolutionary pattern of Quercus genus has been extremely intricate and continues to change rapidly, making it difficult to be fully resolved. The evidence collected in the present investigation would confirm the complex evolution of the oaks, due to their high migration capacity, divergence rate, and hybridization propensity. This research, performed on a so large series of species, represents a positive contribution for highlighting the genetic diversity within collections of Quercus germplasm and favouring ex-situ conservation programmes

    Anabasis articulata (Forssk.) Moq. food aqueous extract triggers oxidative stress-induced senescence and reduces metastatic power in MDA-MB-231 cells

    Get PDF
    Ancient ethnobotanical practices handed down through traditional knowledge are still commonly employed to treat various pathologies, although the scientific reasons underlying their biological effects have not been clarified yet. In this contribution, the potential antitumoral activity of the aqueous extract from A. articulata (AAE) was investigated to validate the hypothesis of the Algerian folk medicine which would suggest this plant derivative as a functional food for treating breast cancer. A. articulata phytocomplex, isolated by maceration following exactly the African recipe, has been already characterized by our research group in previous works. Thus, the antiproliferative function of AAE against MDA-MB-231, a highly aggressive human breast adenocarcinoma cell line, was evaluated. Slowing down of cell growth, absence of cytotoxicity and DNA fragmentation, and cell cycle arrest at the G2/M phase were observed after treatment with AAE at different doses (0.3–6 mg of dried plant material equivalent per mL of culture medium) for 24 and 48 h. Wound and transwell assays proved that AAE possessed both antimigration and antiinvasive capacities, evidence also supported by molecular analyses focused on Metalloproteases (MMP-2 and MMP-9), Vimentin and ανβ3-Integrin. These results, together with the demonstration of the activation of p53/p21WAF1/Cip1/p27Kip1 pathway and the increase of oxygen reactive species levels, suggested that AAE triggered a senescence process. The final confirmation was obtained by a specific kit staining senescent cells. All our data would explain the efficacy of the Algerian medicinal remedy based on the intake of the investigated functional plant food and would highlight the basics for developing novel natural pharmacological products based on AAE and showing preventive and therapeutic antineoplastic potentialities against highly aggressive breast cancers
    corecore