324 research outputs found

    The Concentration-Density Relation of Galaxies in Las Campanas Redshift Survey

    Full text link
    We report the results of the evaluation of the ``concentration-density'' relation of galaxies in the local universe, taking advantage of the very large and homogeneous data set available from the Las Campanas Redshift Survey (Shectman et al. 1996). This data set consists of galaxies inhabiting the entire range of galactic environments, from the sparsest field to the densest clusters, thus allowing us to study environmental variations without combining multiple data sets with inhomogeneous characteristics. Concentration is quantified by the automatically-measured concentration index CC, which is a good measure of a galaxy's bulge-to-disk ratio. The environment of the sample galaxies is characterized both by the three-space local galaxy density and by membership in groups and clusters. We find that the distribution of C in galaxy populations varies both with local density and with cluster/group membership: the fraction of centrally-concentrated galaxies increases with local galaxy density, and is higher in clusters than in the field. A comparison of the concentration-local density relation in clusters and the field shows that the two connect rather smoothly at the intermediate density regime, implying that the apparent cluster/field difference is only a manifestation of the variation with the local density. We conclude that the structure of galaxies is predominantly influenced by the local density and not by the broader environments characterized by cluster/field memberships.Comment: 11 pages, 4 figures, ApJ in press, uses psfig.st

    Signatures of Interstellar-Intracluster Medium Interactions: Spiral Galaxy Rotation Curves in Abell 2029

    Get PDF
    We investigate the rich cluster Abell 2029 (z~0.08) using optical imaging and long-slit spectral observations of 52 disk galaxies distributed throughout the cluster field. No strong emission-line galaxies are present within ~400 kpc of the cluster center, a region largely dominated by the similarly-shaped X-ray and low surface brightness optical envelopes centered on the giant cD galaxy. However, two-thirds of the galaxies observed outside the cluster core exhibit line emission. H-alpha rotation curves of 14 cluster members are used in conjunction with a deep I band image to study the environmental dependence of the Tully-Fisher relation. The Tully-Fisher zero-point of Abell 2029 matches that of clusters at lower redshifts, although we do observe a relatively larger scatter about the Tully-Fisher relation. We do not observe any systematic variation in the data with projected distance to the cluster center: we see no environmental dependence of Tully-Fisher residuals, R-I color, H-alpha equivalent width, and the shape and extent of the rotation curves.Comment: 22 pages, 6 figures, 3 tables; to appear in the August 2000 Astronomical Journa

    Disentangling Morphology, Star Formation, Stellar Mass, and Environment in Galaxy Evolution

    Full text link
    We present a study of the spectroscopic and photometric properties of galaxies in six nearby clusters. We perform a partial correlation analysis on our dataset to investigate whether the correlation between star formation rates in galaxies and their environment is merely another aspect of correlations of morphology, stellar mass, or mean stellar age with environment, or whether star formation rates vary independently of these other correlations. We find a residual correlation of ongoing star formation with environment, indicating that even galaxies with similar morphologies, stellar masses, and mean stellar ages have lower star formation rates in denser environments. Thus, the current star formation gradient in clusters is not just another aspect of the morphology-density, stellar mass-density, or mean stellar age-density relations. Furthermore, the star formation gradient cannot be solely the result of initial conditions, but must partly be due to subsequent evolution through a mechanism (or mechanisms) sensitive to environment. Our results constitute a true ``smoking gun'' pointing to the effect of environment on the later evolution of galaxies.Comment: 31 pages, including 5 figures; accepted for publication in Ap

    Wide-Field Chandra X-Ray Observations of AGN in Abell 85 & Abell 754

    Get PDF
    To better understand the mechanism or mechanisms that lead to AGN activity today, we measure the X-ray AGN fraction in a new sample of nearby clusters and examine how it varies with galaxy properties, projected cluster-centric radius, and cluster velocity dispersion. We present new wide-field Chandra X-ray Observatory observations of Abell 85, Abell 754 and the background cluster Abell 89B out to their virial radii. Out of seventeen X-ray sources associated with galaxies in these clusters, we classify seven as X-ray AGN with L_{X,B} > 10^{41} erg/s. Only two of these would be classified as AGN based on their optical spectra. We combine these observations with archival data to create a sample of X-ray AGN from six z < 0.08 clusters and find that 3.4+1.1/-0.8% of M_R 10^{41} erg/s. We find that more X-ray AGN are detected in more luminous galaxies and attribute this to larger spheriods in more luminous galaxies and increased sensitivity to lower Eddington-rate accretion from black holes in those spheroids. At a given X-ray luminosity limit, more massive black holes can be accreting less efficiently, yet still be detected. If interactions between galaxies are the principal drivers of AGN activity, then the AGN fraction should be higher in lower velocity dispersion clusters and the outskirts of clusters. However, the tendency of the most massive and early-type galaxies to lie in the centers of the richest clusters could dilute such trends. While we find no variation in the AGN fraction with projected cluster-centric radius, we do find that the AGN fraction increases significantly from 2.6+1.0/-0.8% in rich clusters to 10.0+6.2/-4.3% in those with lower velocity dispersions.Comment: Accepted by Astrophysical Journal, 17 pages using emulateapj.cls, 10 B & W Figures (degraded): Full resolution paper available at http://www.astronomy.ohio-state.edu/~sivakoff/AGN/XAGN_A85_A754.pd

    Verification and Validation of the RAGE Hydrocode in Preparation for Investigation of Impacts into a Volatile-rich Target

    Get PDF
    Before a hydrocode is used to investigate a question of scientific interest, it should be tested against analogous laboratory experiments and problems with analytical solutions. The Radiation Adaptive Grid Eulerian (RAGE) hydrocode[1], developed by Los Alamos National Laboratory (LANL) and Science Applications International Corporation (SAIC)[2,3] has been subjected to many tests during its development.[4,5] We extend and review this work, emphasizing tests relevant to impact cratering into volatile-rich targets

    The Influence of Environment on the Star Formation Rates of Galaxies

    Get PDF
    We have used a sample of 15749 galaxies taken from the Las Campanas Redshift Survey to investigate the effects of environment on the rate of star formation (SFR) in galaxies. The size and homogeneity of this data set allows us to sample, for the first time, the entire range of galactic environment, from the voids to the clusters, in a uniform manner, thus, we could decouple the local galaxy density from the membership in associations. This decoupling is very crucial for constraining the physical processes responsible for the environmental dependencies of SFR. On the other hand, the use of an automatically-measured concentration index (C), rather than Hubble type, allows us to cleanly separate the morphological component from the SFR vs. environment relationship. We find that cluster galaxies exhibit lower SFR for the same C than field galaxies, while a further division of clusters by `richness' reveals a new possible excitation of `starbursts' in poor clusters. Meanwhile, a more general environmental investigation reveals that the SFR of a given C shows a continuous correlation with the local density. Interestingly, this trend is also observed both inside and outside of clusters, implying that physical processes responsible for this correlation might not be intrinsic to the cluster environment. On the other hand, galaxies with differing levels of SFR appear to respond differently to the local density. Low levels of SFR are more sensitive to environment inside than outside of clusters. In contrast, high levels of SFR, identified as ``starbursts'', are as sensitive to local density in the field as in clusters. We conclude that at least two separate processes are responsible for the environmental sensitivity of the SFR.Comment: 25 pages, 10 figures, submitted to Ap

    ROTSE All Sky Surveys for Variable Stars I: Test Fields

    Full text link
    The ROTSE-I experiment has generated CCD photometry for the entire Northern sky in two epochs nightly since March 1998. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering about 2000 square degrees we identify 1781 periodic variable stars with mean magnitudes between m_v=10.0 and m_v=15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined, and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.Comment: Accepted for publication in AJ 4/00. LaTeX manuscript. (28 pages, 11 postscript figures and 1 gif

    A Spectro-photometric Search for Galaxy Clusters in SDSS

    Full text link
    Recent large-scale galaxy spectroscopic surveys, such as the Sloan Digital Sky Survey (SDSS), enable us to execute a systematic, relatively-unbiased search for galaxy clusters. Such surveys make it possible to measure the 3-d distribution of galaxies but are hampered by the incompleteness problem due to fiber collisions. In this study we aim to develop a density measuring technique that alleviates the problem and derives densities more accurately by adding additional cluster member galaxies that follow optical color-magnitude relations for the given redshift. The new density measured with both spectroscopic and photometric data shows a good agreement with apparent information on cluster images and is supported by follow-up observations. By adopting this new method, a total of 924 robustrobust galaxy clusters are found from the SDSS DR5 database in the redshift range 0.05<z<0.10.05<z<0.1, of which 212 are new. Local maximum-density galaxies successfully represent cluster centers. We provide the cluster catalogue including a number of cluster parameters.Comment: Web-page address has been revised and minor corrections are don

    Relativistic Jets from Accretion Disks

    Full text link
    The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.Comment: 7 pages, 3 figures, Proc. of High Energy Density Astrophysics Conf., 200
    • 

    corecore