774 research outputs found

    Temporal Stability of Surface Roughness Effects on Radar Based Soil Moisture Retrieval During the Corn Growth Cycle

    Get PDF
    A representative soil surface roughness parameterization needed for the retrieval of soil moisture from active microwave satellite observation is difficult to obtain through either in-situ measurements or remote sensing-based inversion techniques. Typically, for the retrieval of soil moisture, temporal variations in surface roughness are assumed to be negligible. Although previous investigations have suggested that this assumption might be reasonable for natural vegetation covers (Moran et al. 2002, Thoma et al. 2006), insitu measurements over plowed agricultural fields (Callens et al. 2006) have shown that the soil surface roughness can change considerably over time. This paper reports on the temporal stability of surface roughness effects on radar observations and soil moisture retrieved from these radar observations collected once a week during a corn growth cycle (May 10th - October 2002). The data set employed was collected during the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) field campaign covering this 2002 corn growth cycle and consists of dual-polarized (HH and VV) L-band (1.6 GHz) acquired at view angles of 15, 35, and 55 degrees. Cross-polarized L baud radar data were also collected as part of this experiment, but are not used in the analysis reported on here. After accounting for vegetation effects on radar observations, time-invariant optimum roughness parameters were determined using the Integral Equation Method (IEM) and radar observations acquired over bare soil and cropped conditions (the complete radar data set includes entire corn growth cycle). The optimum roughness parameters, soil moisture retrieval uncertainty, temporal distribution of retrieval errors and its relationship with the weather conditions (e.g. rainfall and wind speed) have been analyzed. It is shown that over the corn growth cycle, temporal roughness variations due to weathering by rain are responsible for almost 50% of soil moisture retrieval uncertainty depending on the sensing configuration. The effects of surface roughness variations are found to be smallest for observations acquired at a view angle of 55 degrees and HH polarization. A possible explanation for this result is that at 55 degrees and HH polarization the effect of vertical surface height changes on the observed radar response are limited because the microwaves travel parallel to the incident plane and as a result will not interact directly with vertically oriented soil structures

    Surface Roughness Parameter Uncertainties on Radar Based Soil Moisture Retrievals

    Get PDF
    Surface roughness variations are often assumed to be negligible for the retrieval of sol moisture. Although previous investigations have suggested that this assumption is reasonable for natural vegetation covers (i.e. Moran et al. 2002), in-situ measurements over plowed agricultural fields (i.e. Callens et al. 2006) have shown that the soil surface roughness can change considerably due to weathering induced by rain

    Application of the Tor Vergata Scattering Model to L Band Backscatter During the Corn Growth Cycle

    Get PDF
    At the USDA's Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) experimental site in Beltsville, Maryland, USA) a field campaign took place throughout the 2002 corn growth cycle from May 10th (emergence of corn crops) to October 2nd (harvest). One of the microwave instruments deployed was the multi-frequency (X-, C- and L-band) quad-polarized (HH, HV, VV, VH) NASA GSFC/George Washington University (GWU) truck mounted radar. During the field campaign, this radar system provided once a week fully polarized C- and L-band (4.75 and 1.6 GHz) backscatter measurements from incidence angle of 15, 35, and 55 degrees. In support of microwave observations, an extensive ground characterization took place, which included measurements of surface roughness, soil moisture, vegetation biomass and morphology. The field conditions during the campaign are characterized by several dry downs with a period of drought in the month of August. Peak biomass the corn canopies was reached on July 24th with a total biomass of approximately 6.5 kg/sq m. This dynamic range in both soil moisture and vegetation conditions within the data set is ideal for the validation of discrete medium vegetation scattering models. In this study, we compare the L band backscatter measurements with simulations by the Tor Vergata model (ferrazzoli and Guerriero 1996). The measured soil moisture, vegetation biomass and most reliably measured vegetation morphological parameters (e.g. number of leaves, number of stems and stem height) were used as input for the Tor Vergata model. The more uncertain model parameters (e.g. surface roughness, leaf thickness) and the stem diameter were optimized using a parameter estimation routine based on the Levenberg-Marquardt algorithm. As cost function for this optimization, the HH and VV polarized backscatter measured and stimulated by the TOR Vergata model for incidence angle of 15, 35, and 55 degrees were used (6 measurements in total). The calibrated Tor Vergata model simulations are in excellent agreement with the measurements of Root Mean Squared Differences (RMSD's) of 0.8, 0.9 and 1.4 dB for incidences of 15, 35 and 55 degrees, respectively. The results from this study that a physically based scattering model with the appropriate parameterization can accurately simulate backscatter measurements and, as such, have the potential of being used for the retrieval of biophysical variables (e.g. soil moisture and vegetation biomass)

    L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    Get PDF
    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle

    Овощеводство открытого грунта юга России. Состояние и тенденции развития

    Get PDF
    Relevance. The south of Russia occupies about 45% of the country's vegetable area and produces annually more than 5.7 million tons of vegetables or 48.9% of gross vegetable harvest in the country. The analysis of the state of open-ground vegetable growing in the south of Russia is given, taking into account the dynamics of acreage, yield, and gross harvest. The article presents a forecast of the development of openground vegetable growing in the south of Russia in the medium term, taking into account the organizational and legal changes in the industry.Materials and results. The purpose of the research. Analysis of the state of open-ground vegetable growing in the south of Russia and identification of factors hindering the further development of the industry. The role of innovations introduced into production, variety exchange and variety renewal in increasing the gross yield of vegetables are shown. The reasons of the shortfall in productivity in 10 of 15 subjects of districts below the level of the average district values are given. The article highlights the reasoned judgments about the need to enlarge vegetable farms, expand the range of vegetable crops grown, as well as the need for a widespread transition to organic vegetable growing. The paper uses the official materials of the Federal State Statistics Service (FSSS), reports of agricultural departments of the subjects of two districts, the analysis of which was carried out by the author and comments on them were made.Актуальность. Юг России занимает около 45% овощного поля страны и производит ежегодно более 5,7 млн т овощей, или 48,9% валового сбора овощей в стране. Проанализировано состояние овощеводства открытого грунта юга России с трактовкой динамики посевных площадей, урожайности, валовых сборов. Приводится прогноз развития овощеводства открытого грунта юга России на среднесрочную перспективу с учетом организационно-правовых изменений в отрасли.Материалы и результаты исследований. Цель исследования. Анализ состояния овощеводства открытого грунта юга России и установление факторов, сдерживающих дальнейшее развитие отрасли. Показана роль внедряемых в производство инноваций, сортосмены и сортообновления в повышении валовых сборов овощей. Вскрываются причины недополучения в 10 из 15 субъектов округов урожайности ниже уровня среднеокружных значений. Приводятся аргументированные доводы о необходимости укрупнения овощеводческих хозяйств, расширения ассортимента выращиваемых овощных культур, а также необходимость повсеместного перехода к органическому овощеводству. В работе использованы официальные материалы ФСГС (Федеральной службы государственной статистики), отчеты управлений сельского хозяйства субъектов двух округов. Автором выполнен анализ показателей по ним

    Toward an Integrated Model of Capsule Regulation in Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is an opportunistic fungal pathogen that causes serious human disease in immunocompromised populations. Its polysaccharide capsule is a key virulence factor which is regulated in response to growth conditions, becoming enlarged in the context of infection. We used microarray analysis of cells stimulated to form capsule over a range of growth conditions to identify a transcriptional signature associated with capsule enlargement. The signature contains 880 genes, is enriched for genes encoding known capsule regulators, and includes many uncharacterized sequences. One uncharacterized sequence encodes a novel regulator of capsule and of fungal virulence. This factor is a homolog of the yeast protein Ada2, a member of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex that regulates transcription of stress response genes via histone acetylation. Consistent with this homology, the C. neoformans null mutant exhibits reduced histone H3 lysine 9 acetylation. It is also defective in response to a variety of stress conditions, demonstrating phenotypes that overlap with, but are not identical to, those of other fungi with altered SAGA complexes. The mutant also exhibits significant defects in sexual development and virulence. To establish the role of Ada2 in the broader network of capsule regulation we performed RNA-Seq on strains lacking either Ada2 or one of two other capsule regulators: Cir1 and Nrg1. Analysis of the results suggested that Ada2 functions downstream of both Cir1 and Nrg1 via components of the high osmolarity glycerol (HOG) pathway. To identify direct targets of Ada2, we performed ChIP-Seq analysis of histone acetylation in the Ada2 null mutant. These studies supported the role of Ada2 in the direct regulation of capsule and mating responses and suggested that it may also play a direct role in regulating capsule-independent antiphagocytic virulence factors. These results validate our experimental approach to dissecting capsule regulation and provide multiple targets for future investigation

    Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation

    Get PDF
    Key steps in understanding a biological process include identifying genes that are involved and determining how they are regulated. We developed a novel method for identifying transcription factors (TFs) involved in a specific process and used it to map regulation of the key virulence factor of a deadly fungus—its capsule. The map, built from expression profiles of 41 TF mutants, includes 20 TFs not previously known to regulate virulence attributes. It also reveals a hierarchy comprising executive, midlevel, and “foreman” TFs. When grouped by temporal expression pattern, these TFs explain much of the transcriptional dynamics of capsule induction. Phenotypic analysis of TF deletion mutants revealed complex relationships among virulence factors and virulence in mice. These resources and analyses provide the first integrated, systems-level view of capsule regulation and biosynthesis. Our methods dramatically improve the efficiency with which transcriptional networks can be analyzed, making genomic approaches accessible to laboratories focused on specific physiological processes

    Cryptococcus neoformans Dual GDP-mannose transporters and their role in biology and virulence

    Get PDF
    Cryptococcus neoformans is an opportunistic yeast responsible for lethal meningoencephalitis in humans. This pathogen elaborates a polysaccharide capsule, which is its major virulence factor. Mannose constitutes over one-half of the capsule mass and is also extensively utilized in cell wall synthesis and in glycosylation of proteins and lipids. The activated mannose donor for most biosynthetic reactions, GDP-mannose, is made in the cytosol, although it is primarily consumed in secretory organelles. This compartmentalization necessitates specific transmembrane transporters to make the donor available for glycan synthesis. We previously identified two cryptococcal GDP-mannose transporters, Gmt1 and Gmt2. Biochemical studies of each protein expressed in Saccharomyces cerevisiae showed that both are functional, with similar kinetics and substrate specificities in vitro. We have now examined these proteins in vivo and demonstrate that cells lacking Gmt1 show significant phenotypic differences from those lacking Gmt2 in terms of growth, colony morphology, protein glycosylation, and capsule phenotypes. Some of these observations may be explained by differential expression of the two genes, but others suggest that the two proteins play overlapping but nonidentical roles in cryptococcal biology. Furthermore, gmt1 gmt2 double mutant cells, which are unexpectedly viable, exhibit severe defects in capsule synthesis and protein glycosylation and are avirulent in mouse models of cryptococcosis

    Reliability and predictive validity of a hepatitis-related symptom inventory in HIV-infected individuals referred for Hepatitis C treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aimed to determine the reliability and validity of a hepatitis symptom inventory and to identify predictors of hepatitis C (HCV) treatment initiation in a cohort of HIV-infected patients.</p> <p>Methods</p> <p>Prospective clinic based study that enrolled patients referred for HCV therapy consideration. A hepatitis symptom inventory and the Center for Epidemiologic Studies Depression Scale (CES-D) were administered to HIV/HCV individuals. The symptom inventory was factor analyzed and subscale reliability estimated with Cronbach's alpha. Predictive validity was evaluated using generalized estimating equations (GEE). Predictors of HCV treatment were identified using logistic regression.</p> <p>Results</p> <p>Between April 2008 to July 2010, 126 HIV/HCV co-infected patients were enrolled in the study. Factor analysis using data from 126 patients yielded a three-factor structure explaining 60% of the variance for the inventory. Factor 1 (neuropsychiatric symptoms) had 14 items, factor 2 (somatic symptoms) had eleven items, and factor 3 (sleep symptoms) had two items, explaining 28%, 22% and 11% of the variance, respectively. The three factor subscales demonstrated high intrinsic consistency reliability. GEE modeling of the 32 patients who initiated HCV therapy showed that patients developed worsening neuropsychiatric and somatic symptoms following HCV therapy with stable sleep symptoms. Bivariate analyses identified the following as predictors of HCV therapy initiation: lower HIV log<sub>10 </sub>RNA, lower scores for neuropsychiatric, somatic and sleep symptoms, lower CES-D scores and white ethnicity. In stepwise multiple logistic regression analysis, low neuropsychiatric symptom score was the strongest independent predictor of HCV therapy initiation and HIV log<sub>10 </sub>RNA was inversely associated with a decision to initiate HCV treatment.</p> <p>Conclusions</p> <p>A 41-item hepatitis-related symptom inventory was found to have a clinically meaningful 3-factor structure with excellent internal consistency reliability and predictive validity. In adjusted analysis, low neuropsychiatric symptom scores and controlled HIV infection were independent predictors of HCV treatment initiation. The usefulness of the HCV symptom inventory in monitoring HCV treatment should be evaluated prospectively.</p
    corecore