12 research outputs found

    Optoelectronic Properties of Carbon Nanorings: Excitonic Effects from Time-Dependent Density Functional Theory

    Get PDF
    The electronic structure and size-scaling of optoelectronic properties in cycloparaphenylene carbon nanorings are investigated using time-dependent density functional theory (TDDFT). The TDDFT calculations on these molecular nanostructures indicate that the lowest excitation energy surprisingly becomes larger as the carbon nanoring size is increased, in contradiction with typical quantum confinement effects. In order to understand their unusual electronic properties, I performed an extensive investigation of excitonic effects by analyzing electron-hole transition density matrices and exciton binding energies as a function of size in these nanoring systems. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in the nanorings. Based on overall trends in exciton binding energies and their spatial delocalization, I find that excitonic effects play a vital role in understanding the unique photoinduced dynamics in these carbon nanoring systems.Comment: Accepted by the Journal of Physical Chemistry

    Optimization of a new isoquinoline derivative preparation

    No full text

    Lignans and sesquiterpene lactones from Hypochaeris radicata subsp. neapolitana (Asteraceae, Cichorieae)

    No full text
    Four undescribed lignans and two undescribed sesquiterpenic acids, together with three known compounds (hypochoeroside C, hypochoeroside D, and 5-O-caffeoylshikimic acid) were isolated from the roots of Hypochaeris radicata subsp. neapolitana (Asteraceae, Cichorieae). The lignans were identified as 4-(3,4-dihydroxybenzyl)- 2-(3,4-dihydroxyphenyl)tetrahydrofuran-3-carboxy-O-β-D-glucopyranoside, 4-(3,4-dihydroxybenzyl)- 2-(3,4-dihydroxyphenyl)tetrahydrofuran-3-carboxy-O-β-D-glucopyranosyl-2′-O-methacrylate, (7S,8R,8′R)-7-(3,4-dihydroxyphenyl)-3′,4′-dihydroxy-7,8,7′,8′-tetrahydronaphtho [8,8′-c]furan-1(3H)-one, and (7S,8R,8′R)-7-(3,4-dihydroxyphenyl)-3′,4′-dihydroxy-8'-(hydroxymethyl)-7,8,7′,8′-tetrahydronaphthalen-8-carboxylic acid. The two sesquiterpenic acids were identified as the ring open precursors of hypochoerosides C and D. Structures were elucidated using NMR and HRMS. Absolute configurations of (7S,8R,8′R)-7-(3,4-dihydroxyphenyl)- 3′,4′-dihydroxy-7,8,7′,8′-tetrahydronaphtho [8,8′-c]furan-1(3H)-one and (7S,8R,8′R)-7-(3,4-dihydroxyphenyl)- 3′,4′-dihydroxy-8'-(hydroxymethyl)-7,8,7′,8′-tetrahydronaphthalen-8-carboxylic acid were determined using electronic circular dichroism (ECD) spectroscopy. 4-(3,4-dihydroxybenzyl)-2-(3,4-dihydroxyphenyl)tetrahydrofuran- 3-carboxy-O-β-D-glucopyranoside was evaluated for its anti-proliferative activity against myeloma cell lines MM1S, U266, and NCI-H929 and showed cytotoxicity at 100mM against MM1S strain. No neurotoxicity was observed for major compounds 4-(3,4-dihydroxybenzyl)-2-(3,4-dihydroxyphenyl)tetrahydrofuran- 3-carboxy-O-β-D-glucopyranoside, hypochoeroside C, and hypochoeroside D in a fluorescence assay measuring neurite outgrowth in dorsal root ganglion (DRG) neurons. Additionally, compounds 4-(3,4-dihydroxybenzyl)-2- (3,4-dihydroxyphenyl)tetrahydrofuran-3-carboxy-O-β-D-glucopyranoside, hypochoeroside C, hypochoeroside D, and hypochoerosidic acid D were quantified in unstressed and drought-stressed plants using HPLC-DAD. Drought-stressed plants were found to contain lower concentrations of the lignan 4-(3,4-dihydroxybenzyl)-2- (3,4-dihydroxyphenyl)tetrahydrofuran-3-carboxy-O-β-D-glucopyranoside and sesquiterpene lactone hypochoeroside C
    corecore