22 research outputs found

    High quality phased assembly of grape genome offer new opportunities in chimera detection

    Get PDF
    In perennial plants and especially those propagated through cuttings, several genotypes can coexist in a single individual, thus leading to chimeras. When the variant induces a noticeable phenotype modification, it can lead to a new cultivar. Viticulture already took economic advantage of this natural phenomenon: for instance, the berry skin of ‘Pinot gris’ derived from ‘Pinot noir’ by the selection of a chimera. Chimeras could also impact other crucial traits without being visually identified. Periclinal chimera where the variant has entirely colonized a cell layer is the most stable and can be propagated through cuttings. In grapevine, two functional cell layers are present in leaves, L1 and L2. However, lateral roots are formed from the L2 cell layer only. Thus, comparing DNA sequences of roots and leaves could allow chimera detection. In this study we used new generation Hifi long reads sequencing and recent bioinformatics tools applied to ‘Merlot’ to detect periclinal chimeras. Sequencing of ‘Magdeleine Noire des Charentes’ and ‘Cabernet franc’, the parents of ‘Merlot’, allowed haplotype resolved assembly. Pseudomolecules were built with few contigs, in some occasions only one per chromosome. This high resolution allowed haplotype comparison. Annotation from PN40024 was transferred to all pseudomolecules. Through variant detection, periclinal chimeras were found on both haplotypes. These results open new perspectives on chimera detection, which is an important resource to improve cultivars through clonal selection or breed new ones. Detailed results will be presented and discussed

    De novo phased assembly of the Vitis riparia grape genome

    No full text
    Grapevine is one of the most important fruit species in the world. In order to better understand genetic basis of traits variation and facilitate the breeding of new genotypes, we sequenced, assembled, and annotated the genome of the American native Vitis riparia, one of the main species used worldwide for rootstock and scion breeding. A total of 164 Gb raw DNA reads were obtained from Vitis riparia resulting in a 225X depth of coverage. We generated a genome assembly of the V. riparia grape de novo using the PacBio long-reads that was phased with the 10x Genomics Chromium linked-reads. At the chromosome level, a 500 Mb genome was generated with a scaffold N50 size of 1 Mb. More than 34% of the whole genome were identified as repeat sequences, and 37,207 protein-coding genes were predicted. This genome assembly sets the stage for comparative genomic analysis of the diversification and adaptation of grapevine and will provide a solid resource for further genetic analysis and breeding of this economically important species

    De novo phased assembly of the Vitis riparia grape genome

    No full text
    Grapevine is one of the most important fruit species in the world. In order to better understand genetic basis of traits variation and facilitate the breeding of new genotypes, we sequenced, assembled, and annotated the genome of the American native Viti

    An Improved Assembly of the Diploid ‘Regina’ Sweet Cherry Genome

    No full text
    Sweet cherry (Prunus avium L.) is a diploid species with an estimated genome size of 338 MB (Arumuganathan et al. 1991) and an heterozygous genetic background.We have sequenced and assembled the genome of the ‘Regina’ sweet cherry variety, using FALCON UNZIP and optical mapping. Our de novo genome assembly resulted in a genome of 279 Mb (83 % of estimated genome size), 92 scaffolds and a largest scaffold of 16,3 Mb. The assembly has high contiguity (contig N50=1.23Mb, scaffold N50=5.96Mb) and good completeness with 95,9% BUSCO genes complete (scaffolds+ unscaffolded contigs + haplotigs).Here we present the construction of pseudomolecules using GBS markers, synteny between sweet cherry and peach genomes, and the preliminary results of structural annotation of the genome using a set of RNASeq assemblies of prunus avium
    corecore