104 research outputs found

    DP 600 steel research of dynamic testing

    Get PDF
    Dynamic tensile testing of sheet steels is becoming more important due to the need for more optimized vehicle crashworthiness analysis in the automotive industry. For generating data in dynamic conditions, was using different assay techniques. DP (dual phase) steel is suitable for large complicated shape such as fenders, doors, bumpers and roofs. For experiments was used two testing method servo hydraulic and single bar method. Experiments were realized on steel grade DP 600. Steel were performed and evaluated static and dynamic tests. Microstructure and substructure in static and dynamic loading conditions was investigated

    Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level

    Get PDF
    Support from the projects APVV-15-0469, APVV-15-0621, VEGA 2/0163/16, and VEGA 2/0082/17 is acknowledged. MJR and EGC acknowledge the support of EPSRC grant XMAT (EP/K008749/2)

    A sustainable reaction process for phase pure LiFeSi2O6 with goethite as an iron source

    Get PDF
    Lithium-iron methasilicate (LiFeSi2_{2}O6_{6}, LFS), a member of clinopyroxene family, is an attractive compound for its multiferroic properties and applicability in energy-related devices. Conventional preparative method requires heating at elevated temperatures for long periods of time, with inevitable severe grain growth. We demonstrate that α-FeO(OH) (goethite) is superior as an iron source toward phase pure LFS over conventional hematite, α-Fe2_{2}O3_{3}. The exact phase purity, i.e., no trace of iron containing reactant, is confirmed in the goethite-derived LFS by 57Fe Mössbauer spectroscopy. The grain growth of LFS during heating is suppressed to keep its crystallite size of 120 nm. Higher reactivity of goethite in comparison with hematite is mainly attributed to the dehydration of goethite, which in our case was accelerated by Li2_{2}O. Related reaction mechanisms with the possible product pre-nucleation during mechanical activation are also mentioned. The magnetic properties of goethite-derived LFS are equivalent to those prepared via a laborious solid-state route. Thus, the presented preparative method offers a more sustainable route than conventional processing, and thus enables practical application of LFS

    Characterization of Carbon Nanotubes

    Get PDF
    The aim of the presented work was to characterize single-walled carbon nanotubes as well as multi-walled carbon nanotubes by transmission electron microscopy, the Raman spectroscopy and magnetization measurements to obtain information about their size, structure, and magnetic properties. We show that having different carbon nanotubes one can easily distinguish the single-wall or multi-wall carbon nanotubes and determine their quality. The obtained results show that carbon nanotubes can be diamagnetic or ferromagnetic depending on their structural parameters

    A simple and straightforward mechanochemical synthesis of the far-from-equilibrium zinc aluminate, ZnAl₂O₄, and its response to thermal treatment

    Get PDF
    Zinc aluminate (ZnAl2O4) nanoparticles with an average size of about 10 nm are synthesized via one-step mechanochemical processing of the ZnO : g-Al2O3 stoichiometric mixture at ambient temperature. The mechanochemically induced formation of the phase is followed by XRD and 27Al MAS NMR. Highresolution TEM studies reveal a non-uniform nanostructure of mechanosynthesized aluminate consisting of ordered grains surrounded or separated by disordered surface and interfacial regions. Due to the capability of 27Al MAS NMR to probe the local environment of the Al cations, valuable insights into the short-range structure of ZnAl2O4 on the °Angstr¨om length scale are provided. It is demonstrated that the as-prepared aluminate possesses a partly inverse spinel structure with a far-from equilibrium arrangement of cations and distorted polyhedra, which are spatially confined to the surface and interfacial regions with a volume fraction of ca. 50% and a thickness of ca. 1 nm. The response of the nanostructured ZnAl2O4 to subsequent thermal treatment is further investigated. It turned out that the thermally induced grain growth is accompanied by a release of microstrain, by a shrinkage of the lattice parameter, as well as by a variation in the oxygen parameter and metal–oxygen bond lengths. Evidence is given of the thermally induced redistribution of cations approaching their equilibrium positions. Upon heating above 1100 K, mechanosynthesized ZnAl2O4 relaxes towards a structural state that is similar to the bulk one

    Exchange Bias Effect in NdFeO3 System of Nanoparticles

    Get PDF
    We study the effect of nanometric size on the crystal structure, magnetic environment of iron and magnetization in NdFeO3 system of nanoparticles. The average particle size of NdFeO3 nanoparticles increases with annealing at 600 degrees C from about 15 nm to 40 nm, The smallest particles on annealed sample have size approximately 30 nm and typically have character of single crystalline samples. All samples adopt orthorhombic crystal structure, space group Prima with lattice parameters a = 5.5817 angstrom, b = 7.7663 angstrom and c = 5.456 angstrom for as prepared sample. The presence of superparamagnetic particles was indicated by the Mossbauer measurements. The reduction of dimensionality induces a decrease of T-N1 from 691 K to 544 K. The shift of magnetic hysteresis loop in vertical and horizontal direction was observed at low temperatures after cooling in magnetic field. We attribute such behaviour to exchange bias effect and discuss in the frame of core shellmodel.16th Czech and Slovak Conference on Magnetism (CSMAG), Jun 13-17, 2016, Kosice, Slovaki
    corecore