19 research outputs found

    Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism

    Get PDF
    ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder

    Characterization of greater middle eastern genetic variation for enhanced disease gene discovery

    Get PDF
    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics

    Clinical and genetic spectrum of AMPD2-related pontocerebellar hypoplasia type 9.

    No full text
    Pontocerebellar hypoplasia (PCH) represents a group of autosomal-recessive progressive neurodegenerative disorders of prenatal onset. Eleven PCH subtypes are classified according to clinical, neuroimaging and genetic findings. Individuals with PCH type 9 (PCH9) have a unique combination of postnatal microcephaly, hypoplastic cerebellum and pons, and hypoplastic or absent corpus callosum. PCH9 is caused by biallelic variants in AMPD2 encoding adenosine monophosphate deaminase 2; however, a homozygous AMPD2 frameshift variant has recently been reported in two family members with spastic paraplegia type 63 (SPG63). We identified homozygous or compound heterozygous AMPD2 variants in eight PCH-affected individuals from six families. The eight variants likely affect function and comprise one frameshift, one nonsense and six missense variants; seven of which were novel. The main clinical manifestations in the eight new patients and 17 previously reported individuals with biallelic AMPD2 variants were postnatal microcephaly, severe global developmental delay, spasticity, and central visual impairment. Brain imaging data identified hypomyelination, hypoplasia of the cerebellum and pons, atrophy of the cerebral cortex, complete or partial agenesis of the corpus callosum and the "figure 8" shape of the hypoplastic midbrain as consistent features. We broaden the AMPD2-related clinical spectrum by describing one individual without microcephaly and absence of the characteristic "figure 8" shape of the midbrain. The existence of various AMPD2 isoforms with different functions possibly explains the variability in phenotypes associated with AMPD2 variants: variants leaving some of the isoforms intact may cause SPG63, while those affecting all isoforms may result in the severe and early-onset PCH9

    Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype

    Get PDF
    Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis

    Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism

    No full text
    ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder

    Clinically relevant variants in a large cohort of Indian patients with Marfan syndrome and related disorders identified by next-generation sequencing

    No full text
    Abstract Marfan syndrome and related disorders are a group of heritable connective tissue disorders and share many clinical features that involve cardiovascular, skeletal, craniofacial, ocular, and cutaneous abnormalities. The majority of affected individuals have aortopathies associated with early mortality and morbidity. Implementation of targeted gene panel next-generation sequencing in these individuals is a powerful tool to obtain a genetic diagnosis. Here, we report on clinical and genetic spectrum of 53 families from India with a total of 83 patients who had a clinical diagnosis suggestive of Marfan syndrome or related disorders. We obtained a molecular diagnosis in 45/53 (85%) index patients, in which 36/53 (68%) had rare variants in FBN1 (Marfan syndrome; 63 patients in total), seven (13.3%) in TGFBR1/TGFBR2 (Loeys–Dietz syndrome; nine patients in total) and two patients (3.7%) in SKI (Shprintzen–Goldberg syndrome). 21 of 41 rare variants (51.2%) were novel. We did not detect a disease-associated variant in 8 (15%) index patients, and none of them met the Ghent Marfan diagnostic criteria. We found the homozygous FBN1 variant p.(Arg954His) in a boy with typical features of Marfan syndrome. Our study is the first reporting on the spectrum of variants in FBN1, TGFBR1, TGFBR2, and SKI in Indian individuals

    Clinical and genetic spectrum of AMPD2-related pontocerebellar hypoplasia type 9

    No full text
    Pontocerebellar hypoplasia (PCH) represents a group of autosomal-recessive progressive neurodegenerative disorders of prenatal onset. Eleven PCH subtypes are classified according to clinical, neuroimaging and genetic findings. Individuals with PCH type 9 (PCH9) have a unique combination of postnatal microcephaly, hypoplastic cerebellum and pons, and hypoplastic or absent corpus callosum. PCH9 is caused by biallelic variants in AMPD2 encoding adenosine monophosphate deaminase 2; however, a homozygous AMPD2 frameshift variant has recently been reported in two family members with spastic paraplegia type 63 (SPG63). We identified homozygous or compound heterozygous AMPD2 variants in eight PCH-affected individuals from six families. The eight variants likely affect function and comprise one frameshift, one nonsense and six missense variants; seven of which were novel. The main clinical manifestations in the eight new patients and 17 previously reported individuals with biallelic AMPD2 variants were postnatal microcephaly, severe global developmental delay, spasticity, and central visual impairment. Brain imaging data identified hypomyelination, hypoplasia of the cerebellum and pons, atrophy of the cerebral cortex, complete or partial agenesis of the corpus callosum and the "figure 8" shape of the hypoplastic midbrain as consistent features. We broaden the AMPD2-related clinical spectrum by describing one individual without microcephaly and absence of the characteristic "figure 8" shape of the midbrain. The existence of various AMPD2 isoforms with different functions possibly explains the variability in phenotypes associated with AMPD2 variants: variants leaving some of the isoforms intact may cause SPG63, while those affecting all isoforms may result in the severe and early-onset PCH9
    corecore