39 research outputs found

    Erythrocyte's aging in microgravity highlights how environmental stimuli shape metabolism and morphology

    Get PDF
    The determination of the function of cells in zero-gravity conditions is a subject of interest in many different research fields. Due to their metabolic unicity, the characterization of the behaviour of erythrocytes maintained in prolonged microgravity conditions is of particular importance. Here, we used a 3D-clinostat to assess the microgravity-induced modifications of the structure and function of these cells, by investigating how they translate these peculiar mechanical stimuli into modifications, with potential clinical interest, of the biochemical pathways and the aging processes. We compared the erythrocyte's structural parameters and selected metabolic indicators that are characteristic of the aging in microgravity and standard static incubation conditions. The results suggest that, at first, human erythrocytes react to external stimuli by adapting their metabolic patterns and the rate of consumption of the cell resources. On longer timeframes, the cells translate even small differences in the environment mechanical solicitations into structural and morphologic features, leading to distinctive morphological patterns of agin

    Correlating nanoscale motion and ATP production in healthy and favism erythrocytes: a real-time nanomotion sensor study

    Get PDF
    IntroductionRed blood cells (RBCs) are among the simplest, yet physiologically relevant biological specimens, due to their peculiarities, such as their lack of nucleus and simplified metabolism. Indeed, erythrocytes can be seen as biochemical machines, capable of performing a limited number of metabolic pathways. Along the aging path, the cells’ characteristics change as they accumulate oxidative and non-oxidative damages, and their structural and functional properties degrade.MethodsIn this work, we have studied RBCs and the activation of their ATP-producing metabolism using a real-time nanomotion sensor. This device allowed time-resolved analyses of the activation of this biochemical pathway, measuring the characteristics and the timing of the response at different points of their aging and the differences observed in favism erythrocytes in terms of the cellular reactivity and resilience to aging. Favism is a genetic defect of erythrocytes, which affects their ability to respond to oxidative stresses but that also determines differences in the metabolic and structural characteristic of the cells.ResultsOur work shows that RBCs from favism patients exhibit a different response to the forced activation of the ATP synthesis compared to healthy cells. In particular, the favism cells, compared to healthy erythrocytes, show a greater resilience to the aging-related insults which was in good accord with the collected biochemical data on ATP consumption and reload.ConclusionThis surprisingly higher endurance against cell aging can be addressed to a special mechanism of metabolic regulation that permits lower energy consumption in environmental stress conditions

    3D X-ray microscopy (XRM) investigation of exogenous materials inside mussels’ organs

    Get PDF
    The diffusion of pollutants in the marine environment is nowadays a well-recognized issue that is attracting growing interest from the scientific and social communities. One of the possible strategies to study the effect of pollutants is to quantify their presence inside marine organisms that are directly exposed for a certain period to the polluted environment. Among them, mussels, commonly considered as “biological water filters”, stand out as ideal candidates since they are stationary animals and their food intake comes only from the filtering of the surrounding water. Thus, the evaluation of the accumulation of exogenous pollutants, in particular high-density or metallic, inside the mussel's organs and specifically in its digestive glands, is of particular interest. In this paper we characterize the accumulation of exogenous materials in digestive glands of three different mussels by means of X-ray microscopy analysis. We provide evidence of how the unique capabilities of this technique allow reconstructing a full 3D image of an entire organ and how this image can provide valuable information to identify exogenous (non-biological) pollutants. Moreover, we take full advantage from the segmentation analysis of the images by discriminating different regions of the sample according to the density. With this experimental approach we measured the sizes of the exogenous pollutants and provided evidences that they accumulate preferentiality in the low-density regions of the organ, that are richer in ducts and secretive glands

    FC_analysis: a tool for investigating atomic force microscopy maps of force curves

    No full text
    Abstract Background The collection and analysis of Atomic Force Microscopy force curves is a well-established procedure to obtain high-resolution information of non-topographic data from any kind of sample, including biological specimens. In particular, these analyses are commonly employed to study elasticity, stiffness or adhesion properties of the samples. Furthermore, the collection of several force curves over an extended area of the specimens allows reconstructing maps, called force volume maps, of the spatial distribution of the mechanical properties. Coupling these maps with the conventional high-resolution topographic reconstruction of the sample’s surface, provides a deeper insight on the sample composition from the structural and nanomechanical point of view. Results In this paper we present the open source software package FC_analysis that automatically analyses single force curves or entire force volume maps to yield the corresponding elasticity and deformability images. The principal characteristic of the FC_analysis is a large adaptability to the various experimental setups and to different analysis methodologies. For instance, the user can provide custom values for the detector sensitivity, scanner-z sensitivity, cantilever’s elastic constant and map’s acquisition modality and can choose between different analysis methodologies. Furthermore, the software allows the optimization of the fitting parameters and gives direct control on each step of the analysis procedure. Notably, to overcome a limitation common to many other analysis programs, FC_analysis can be applied to a rectangular portion of the image, allowing the analysis of inhomogeneous samples. Finally, the software allows reconstructing a Young’s modulus map at different penetration depths, enabling the use of modern investigation tools such as the force tomography. Conclusions The FC_analysis software aims to become a useful tool for the analysis of force curves maps collected using custom or commercial Atomic Force Microscopes, and is especially useful in those cases for which the producer doesn’t release a dedicated software

    Mechano-Transduction Boosts the Aging Effects in Human Erythrocytes Submitted to Mechanical Stimulation

    No full text
    Erythrocytes' aging and mechano-transduction are fundamental cellular pathways that determine the red blood cells' (RBCs) behavior and function. The aging pattern can be influenced, in morphological, biochemical, and metabolic terms by the environmental conditions. In this paper, we studied the effect of a moderate mechanical stimulation applied through external shaking during the RBCs aging and revealed a strong acceleration of the aging pattern induced by such stimulation. Moreover, we evaluated the behavior of the main cellular effectors and resources in the presence of drugs (diamide) or of specific inhibitors of the mechano-transduction (probenecid, carbenoxolone, and glibenclamide). This approach provided the first evidence of a direct cross-correlation between aging and mechano-transduction and permitted an evaluation of the overall metabolic regulation and of the insurgence of specific morphological features, such as micro-vesicles and roughness alterations. Overall, for the first time the present data provided a schematic to understand the integration of distinct complex patterns in a comprehensive view of the cell and of its interactions with the environment. Mechano-transduction produces structural effects that are correlated with the stimulation and the strength of the environmental stimulation is paramount to effectively activate and trigger the biological cascades initiated by the mechano-sensing
    corecore