41 research outputs found

    Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models

    Get PDF
    Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis (atlantis.cmar.csiro.au) end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups) biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass), while marine protected areas led to both “winners” and “losers” at the level of particular species (or functional groups). Changing fishing pressure (doubling or halving) had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks) to taking into account competing industrial sectors\u27 objectives (e.g., simultaneous spatial management of energy, shipping, and fishing) while at the same time grappling with compounded impacts of global climate change (e.g., ocean acidification and warming)

    Converging and diverging burn rates in North American boreal forests from the Little Ice Age to the present

    Get PDF
    Warning. This article contains terms, descriptions, and opinions used for historical context that may be culturally sensitive for some readers. Background. Understanding drivers of boreal forest dynamics supports adaptation strategies in the context of climate change. Aims. We aimed to understand how burn rates varied since the early 1700s in North American boreal forests. Methods. We used 16 fire-history study sites distributed across such forests and investigated variation in burn rates for the historical period spanning 1700-1990. These were benchmarked against recent burn rates estimated for the modern period spanning 1980-2020 using various data sources. Key results. Burn rates during the historical period for most sites showed a declining trend, particularly during the early to mid 1900s. Compared to the historical period, the modern period showed less variable and lower burn rates across sites. Mean burn rates during the modern period presented divergent trends among eastern versus northwestern sites, with increasing trends in mean burn rates in most northwestern North American sites. Conclusions. The synchronicity of trends suggests that large spatial patterns of atmospheric conditions drove burn rates in addition to regional changes in land use like fire exclusion and suppression. Implications. Low burn rates in eastern Canadian boreal forests may continue unless climate change overrides the capacity to suppress fire.Peer reviewe

    An integrated environmental and human systems modeling framework for Puget Sound restoration planning

    Get PDF
    Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a more coordinated systems-based restoration approach is needed to achieve recovery goals. This presentation describes our collaborative effort to develop and apply an integrated environmental and human systems modeling framework for the Puget Sound Basin, inclusive of all marine and land areas (1,020 and 12,680 sq. mi.). Our goal is to establish a whole-basin systems modeling framework that dynamically simulates biophysical interactions and transfers (water, nutrients, contaminants, biota) across terrestrial-marine boundaries. The core environmental models include a terrestrial ecohydrological model (VELMA), an ocean circulation and biogeochemistry model (Salish Sea Model), and an ocean food web model (Atlantis). This environmental subsystem will be linked with an agent-based modeling subsystem (e.g., Envision) that allows human decision-makers to be represented in whole-basin simulations. The integrated environmental and human systems framework aims to facilitate discourse among different stakeholders and decision makers (agents) and enable them play out the ecological, social and economic consequences of alternative ecosystem restoration choices. All of these models are currently being applied in Puget Sound, but they have not yet been integrated. The linked models will better capture the propagation of human impacts throughout the terrestrial-marine ecosystem, and thereby provide a more effective decision support tool for addressing restoration of high priority environmental endpoints, such as the Vital Signs identified by the Puget Sound Partnership (http://www.psp.wa.gov/vitalsigns/). Our overview will include examples of existing stand-alone model applications, and conceptual plans for linking models across terrestrial-marine boundaries. The Puget Sound multi-model framework described here can potentially be expanded to address the entire Salish Sea transboundary ecosystem (https://www.eopugetsound.org/maps/salish-sea-basin-and-water-boundaries)

    Ecosystem and fishers’ behaviour modelling: two crucial and interacting approaches to support Ecosystem Based Fisheries Management in the Eastern English Channel

    No full text
    The implementation of the ecosystem approach to fisheries management (EAFM) requires an enhancement of our knowledge of ecosystem complexity. Understanding the ecosystem reaction to management regulation is a key to achieve conservation objectives. Ecosystem modelling improves our knowledge on ecosystem functioning in interaction with human activities, and it is now widely used to evaluate management strategies. The fishers’ behaviour of the French demersal fisheries in the Eastern English Channel (EEC) has been investigated. Results showed that fishers tended to adhere to past annual fishing practices and maritime traffic may impact on fishing decision. A global analysis of the fisheries science literature during the last three decades evidenced the influence of tradition and species targeting in fishers’ behaviour. The exploration of ecosystem dynamics required the use of the ecosystem model Atlantis with a focus on two commercial flatfish species, sole (Solea solea) and plaice (Pleuronectes platessa). The importance of estuary areas and of nutrient inputs has been revealed as well as the role of discards and of two key species, cod (Gadus morhua) and whiting (Merlangius merlangius). Sole and plaice did not have a strong influence on the trophic network excepted on benthic invertebrate dynamics. Finally, we investigated the consequences of area closure and effort reduction on fishers’ behaviour and the ecosystem impacted. We observed a noticeable benefit of combining area closure and effort reduction on the biomass of most commercial species and on the total value landed per unit effort.La mise en place de l’approche Ă©cosystĂ©mique des pĂȘches (AEP) requiert une amĂ©lioration de nos connaissances sur la complexitĂ© des Ă©cosystĂšmes. Comprendre la rĂ©action de l’écosystĂšme Ă  des mesures de gestion est essentiel pour atteindre les objectifs de conservation. La modĂ©lisation Ă©cosystĂ©mique a amĂ©liorĂ© nos connaissances sur le fonctionnement des Ă©cosystĂšmes et leurs interactions avec les usages du domaine maritime; et est de plus en plus utilisĂ©e pour Ă©valuer l’impact de mesures de gestion. Le comportement de pĂȘche des flottilles dĂ©mersales françaises en Manche Orientale a Ă©tĂ© analysĂ©. Les rĂ©sultats montrent que les pĂȘcheurs conservent leurs habitudes de pĂȘches et que le trafic maritime peut impacter leurs dĂ©cisions. Une analyse globale des rĂ©sultats d’études menĂ©es au cours des trente derniĂšres annĂ©es dĂ©montre l’influence des habitudes et des espĂšces ciblĂ©es sur le comportement de pĂȘche. L’exploration de la dynamique de l’écosystĂšme a nĂ©cessitĂ© l’utilisation du modĂšle Atlantis, en focalisant sur deux espĂšces commerciales, la sole (Solea solea) et la plie (Pleuronectes platessa). L’importance des zones estuariennes est rĂ©vĂ©lĂ©e, ainsi que le rĂŽle jouĂ© par les rejets et par deux espĂšces clĂ©s, la morue (Gadus morhua) et le merlan (Merlangius merlangius). La sole et la plie ont peu d’influence sur le rĂ©seau trophique exceptĂ© sur la dynamique des invertĂ©brĂ©s benthiques. Nous Ă©valuons les consĂ©quences de l’application de fermeture de zones et d’une rĂ©duction d’effort sur le comportement de pĂȘche et l’écosystĂšme et mettons en Ă©vidence un bĂ©nĂ©fice de l’application combinĂ©e de ces mesures sur la biomasse des espĂšces commerciales et sur la valeur dĂ©barquĂ©e par unitĂ© d’effort

    French data processing for assessment working groups

    No full text
    During the flatfish benchmark held in ICES in 2020 (WKFlatNSCS), questions arose on the modifications made recently on two key fields of fisheries data processed by France for providing data to stock assessment groups. These two fields are: ‱ the gap filling method in Age Length Keys ‱ the effort aggregates in support of discards raising procedure Updates of procedures, improvements of R scripts and coding are done permanently, and some of the modifications made in 2019 at the demand of WGNSSK experts had unraveled issues that went undetected until data submission of sol.27.7d full time series for WKFlatNSCS benchmark. These issues may have also impacted the Celtic Sea benchmark (WKCELTIC) and to a lesser extent the WKDEM earlier in the year.  The document is meant to bring clarity in the procedure used recently, the differences it made on the final estimates of discards and age structures, and propose a way to fix the issues.Lors du benchmark sur les poissons plats organisĂ© par le CIEM en 2020 (WKFlatNSCS), des questions ont Ă©tĂ© soulevĂ©es sur les modifications apportĂ©es rĂ©cemment sur deux domaines clĂ©s des donnĂ©es de pĂȘche traitĂ©es par la France pour fournir des donnĂ©es aux groupes d'Ă©valuation des stocks. Ces deux domaines sont les suivants - la mĂ©thode de comblement des lacunes dans les clĂ©s taille-Ăąge - les agrĂ©gats d'effort Ă  l'appui de la procĂ©dure d'Ă©lĂ©vation des rejets Les mises Ă  jour des procĂ©dures, les amĂ©liorations des scripts R et du codage sont effectuĂ©es en permanence, et certaines des modifications apportĂ©es en 2019 Ă  la demande des experts du WGNSSK ont gĂ©nĂ©rĂ© des problĂšmes qui n'avaient pas Ă©tĂ© dĂ©tectĂ©s jusqu'Ă  la soumission des donnĂ©es de la sĂ©rie temporelle complĂšte sol.27.7d pour le benchmark WKFlatNSCS. Ces problĂšmes peuvent Ă©galement avoir eu un impact sur le benchmark des gadidĂ©s de la mer Celtique (WKCELTIC) et, dans une moindre mesure, sur le WKDEM en dĂ©but d'annĂ©e.  Le document vise Ă  clarifier la procĂ©dure utilisĂ©e rĂ©cemment, les diffĂ©rences qu'elle a pu produire sur les estimations finales des rejets et des structures d'Ăąge, et Ă  proposer une maniĂšre de rĂ©soudre ces problĂšmes

    Detection of fishing pressure using ecological network indicators derived from ecosystem models

    No full text
    Marine ecosystems are exposed to multiple stressors, mainly fisheries that, whenever mismanaged, may cause irreversible damages to whole food webs. Ecosystem models have been applied to forecast fisheries impact on fish stocks and marine food webs. These impacts have been studied through the use of multiple indicators that help to understand ecosystem responses to stressors. This study focused on a category of ecological indicators derived from the network theory to quantify energy flows inside the food web. These indicators were computed using two ecosystem models applied to the Eastern English Channel (i.e. Atlantis and OSMOSE). This work aimed at investigating how several ecological network indicators respond to different levels of fishing pressure and evaluating their robustness to model structure and fishing strategies. We applied a gradient of fishing mortality using two ecosystem models and carried out ecological network analysis to obtain network-derived indicators. The results revealed that the indicators response is highly driven by the food web structure, although the model assumptions buffered some results. The indicators computed from OSMOSE outputs were more sensitive to changes in fishing pressure than those from Atlantis. However, once the food web from Atlantis was simplified to mimic the structure of OSMOSE model, the indicators of the modified Atlantis became more sensitive to the intensity of fishing pressure. The indicators related to amount of energy flow and to the organization of the flows in the food web were sensitive to the increase of fishing mortality for all fishing strategies. These indicators suggested that increasing fishing mortality jeopardizes the amount of energy mobilized by the food webs and simplifies the ecological interactions, which has implications for the resilience of marine ecosystems. The study shed light on the trophic networks structure and functioning of the ecosystems whenever exposed to disturbances. Furthermore, these indicators might be adequate for whole ecosystem assessments of health and contribute to ecosystem management

    Predicting fisher response to competition for space and resources in a mixed demersal fishery

    No full text
    Understanding and modelling fleet dynamics and their response to spatial constraints is a prerequisite to anticipating the performance of marine ecosystem management plans. A major challenge for fisheries managers is to be able to anticipate how fishing effort is re-allocated following any permanent or seasonal closure of fishing grounds, given the competition for space with other active maritime sectors. In this study, a Random Utility Model (RUM) was applied to determine how fishing effort is allocated spatially and temporally by the French demersal mixed fleet fishing in the Eastern English Channel. The explanatory variables chosen were past effort i.e. experience or habit, previous catch to represent previous success, % of area occupied by spatial regulation, and by other competing maritime sectors. Results showed that fishers tended to adhere to past annual fishing practices, except the fleet targeting molluscs which exhibited within year behaviour influenced by seasonality. Furthermore, results indicated French and English scallop fishers share the same fishing grounds, and maritime traffic may impact on fishing decision. Finally, the model was validated by comparing predicted re-allocation of effort against observed effort, for which there was a close correlation

    Reconciling complex system models and fisheries advice: Practical examples and leads

    No full text
    The move toward an ecosystem-based fisheries management (EBFM) requires new operational tools in order to support management decisions. Among them, ecosystem- and fisheries-based models are critical to quantitatively predict the consequences of future scenarios by integrating available knowledge about the ecosystem across different scales. Despite increasing development of these complex system models in the last decades, their operational use is still currently limited in Europe. Many guidelines are already available to help the development of complex system models for advice yet they are often ignored. We identified three main impediments to the use of complex system models for decision support: (1) their very complexity which is a source of uncertainty; (2) their lack of credibility, (3) and the challenge of communicating/transferring complex results to decision makers not accustomed to deal with multivariate uncertain results. In this paper, we illustrate these somehow theoretical “best practices” with tangible successful examples, which can help the transfer of complex system models from academic science to operational advice. We first focus on handling uncertainty by optimizing model complexity with regards to management objectives and technical issues. We then list up methods, such as transparent documentation and performance evaluation, to increase confidence in complex system models. Finally, we review how and where complex system models could fit within existing institutional and legal settings of the current European fisheries decision framework. We highlight where changes are required to allow for the operational use of complex system models. All methods and approaches proposed are illustrated with successful examples from fisheries science or other disciplines. This paper demonstrates that all relevant ingredients are readily available to make complex system models operational for advice

    Rapport annuel 2021 de l’UnitĂ© Halieutique Manche – Mer du Nord (HMMN)

    No full text
    L’UnitĂ© de recherche HMMN, crĂ©Ă©e en 2005, appartient depuis 2011 au DĂ©partement Ressources Biologiques et Environnement (RBE), qui est l’un des 4 DĂ©partement scientifiques de l’IFREMER, avec les DĂ©partements OcĂ©anographie et Dynamique des EcosystĂšmes (ODE), Recherches physiques et EcosystĂšmes de fond de Mer (REM) et Infrastructures de Recherche et SystĂšmes d’Information (IRSI). L’UnitĂ© de recherche HMMN est constituĂ©e de deux laboratoires, l’un situĂ© Ă  Boulogne sur mer dans les Hauts de France (LRHBL) et l’autre Ă  Port-en-Bessin en Normandie (LRHPB). Ces deux laboratoires, ainsi que les autres laboratoires des DĂ©partements ODE et REM localisĂ©s Ă  Boulogne s/mer et Port-en-Bessin (ODE: deux Laboratoires Environnement Ressources, LERBL et LERN; REM: un Laboratoire Comportement des Structures en Mer, LCSM), sont rattachĂ©s administrativement au Centre de Manche – Mer du Nord (CMMN) de l’IFREMER. L’équipe HMMN effectue des recherches en Ă©cologie marine et halieutique, principalement centrĂ©es sur les Ă©cosystĂšmes de Manche et Sud mer du Nord. Ces recherches trouvent un prolongement dans l’appui aux politiques publiques concernant la conservation des Ă©cosystĂšmes marins et l’amĂ©nagement des pĂȘcheries et d’autres usages du domaines maritime (e.g., extraction de sables et granulats marins, production d’énergies marines renouvelables), dans un contexte de changement climatique. L’unitĂ© HMMN contribue Ă  la collecte de donnĂ©es halieutiques et Ă©cosystĂ©miques en mer, par enquĂȘtes, et en laboratoire, et centralise Ă  travers la cellule CREDO, le traitement et l’envoi des donnĂ©es halieutiques requises par une variĂ©tĂ© d’organismes scientifiques, gestionnaires, professionnels et non gouvernementaux. HMMN coordonne trois campagnes en mer Ă  grande Ă©chelle rĂ©gionale et hĂ©berge trois infrastructures technologiques: un PĂŽle National de SclĂ©rochronologie (PNS), une Plateforme RĂ©seaux Trophiques (PRT), et un PĂŽle de Taxinomie et d’Ecologie du Zooplancton (PTEZOO). En cherchant Ă  mieux comprendre les interactions entre les ressources halieutiques et leur environnement (biotique et abiotique), dans un contexte de changement global, l’unitĂ© HMMN contribue spĂ©cifiquement à plusieurs des enjeux dĂ©finis dans le projet de l’institut: E6 (Évaluer le devenir des Ă©cosystĂšmes cĂŽtiers dans le changement global), E9 (Identifier les effets des interactions entre groupes fonctionnels sur la dynamique des Ă©cosystĂšmes exploitĂ©s), E10 (Évaluer la rĂ©silience et anticiper les changements d’état – points de basculement des socio-Ă©cosystĂšmes et de la biodiversitĂ© associĂ©e aux diffĂ©rents niveaux d’organisation), et E13 (Identifier de nouvelles bioressources marines). Ces enjeux sont dĂ©clinĂ©s au sein de l’UnitĂ© dans trois ThĂšmes scientifiques correspondant Ă  des niveaux d’organisation systĂ©mique de plus en plus complexes : Individus, Populations et Niches Ecologiques (ThĂšme 1); CommunautĂ©s, RĂ©seaux Trophiques et BiodiversitĂ© (ThĂšme 2); Flottilles, Exploitation et ScĂ©narios de Gestion (ThĂšme 3). Les approches mĂ©thodologiques menĂ©es en 2021 pour amĂ©liorer notre comprĂ©hension des processus ont utilisĂ© et/ou combinĂ© des analyses empiriques de donnĂ©es d’observation in-situ, expĂ©rimentales et de modĂ©lisation, ces derniĂšres Ă©tant directement liĂ©es Ă  deux dĂ©fis du projet d’Institut : D2 (l’expĂ©rimentation pour amĂ©liorer notre comprĂ©hension des processus) et D3 (la modĂ©lisation prĂ©dictive intĂ©grĂ©e des socio-Ă©cosystĂšmes). Enfin, l’unitĂ© HMMN a jouĂ© en 2021, comme au cours des annĂ©es prĂ©cĂ©dentes, un rĂŽle de catalyseur pour les sciences marines au niveau rĂ©gional d’une part dans les Hauts-de-France comme membre actif de la FĂ©dĂ©ration de Recherche Campus de la Mer, l’un des chefs de file de projets CPERs et enfin comme unitĂ© participant Ă  l’École universitaire de recherche transdisciplinaire pour les sciences marines, l’halieutique et les produits de la mer (Transdisciplinary graduate school for marIne, Fisheries and SEAfood sciences, IFSEA) mis en place en 2021 dans le cadre des PIA4 de l’Agence Nationale de la Recherche (ANR) et d’autre part en Normandie comme membre de la FĂ©dĂ©ration de Recherche Merlin. De plus, l’unitĂ© HMMN a continuĂ© Ă  renforcer son implication dans les rĂ©gions ultrapĂ©riphĂ©riques (RUP), avec plusieurs projets comme Accobiom ciblant la Guadeloupe, la Martinique, la Guyane et la RĂ©union mais aussi Ă  travers de nombreux travaux et expertises menĂ©s Ă  Saint-Pierre et Miquelon. Enfin, au niveau international, l’unitĂ© HMMN contribue aussi au rayonnement de l’IFREMER au travers de recrutements (chercheurs, post-doctorants, Ă©tudiants en thĂšse) et de l’implication Ă  haut niveau de chercheurs HMMN dans des projets de recherche europĂ©ens et de groupes de travail structurants (e.g., prĂ©sidence de GTs du CIEM, du CSTEP, de RCGs, experts nommĂ©s pour le GIEC ou l’IPBES). En 2021, de nouveaux projets structurants pour l’unitĂ© HMMN ont Ă©tĂ© acceptĂ©s (e.g, CPER IDEAL, FORESEA 2050, MAESTRO, SAR, CARPARC, IPREM, ACCOBIOM). Une thĂšse a Ă©tĂ© soutenue 2021 avec succĂ©s et deux nouvelles thĂšses ont dĂ©marrĂ©. L’équipe a Ă©galement maintenu son niveau d’engagement dans l’APP, qu’il s’agisse d’avis et expertises (nĂ©cessitant dans le cadre de certains Groupes de Travail internationaux des visioconfĂ©rences de plus d’une rĂ©union en prĂ©sentiel), ou de rĂ©alisation de campagnes Ă  la mer (IBTS, CGFS, COMOR, DCSMM, IGA)
    corecore