35 research outputs found

    Optimized testing strategy for the diagnosis of GAA-FGF14 ataxia/spinocerebellar ataxia 27B

    Get PDF
    Dominantly inherited GAA repeat expansions in FGF14 are a common cause of spinocerebellar ataxia (GAA-FGF14 ataxia; spinocerebellar ataxia 27B). Molecular confirmation of FGF14 GAA repeat expansions has thus far mostly relied on long-read sequencing, a technology that is not yet widely available in clinical laboratories. We developed and validated a strategy to detect FGF14 GAA repeat expansions using long-range PCR, bidirectional repeat-primed PCRs, and Sanger sequencing. We compared this strategy to targeted nanopore sequencing in a cohort of 22 French Canadian patients and next validated it in a cohort of 53 French index patients with unsolved ataxia. Method comparison showed that capillary electrophoresis of long-range PCR amplification products significantly underestimated expansion sizes compared to nanopore sequencing (slope, 0.87 [95% CI, 0.81 to 0.93]; intercept, 14.58 [95% CI, − 2.48 to 31.12]) and gel electrophoresis (slope, 0.84 [95% CI, 0.78 to 0.97]; intercept, 21.34 [95% CI, − 27.66 to 40.22]). The latter techniques yielded similar size estimates. Following calibration with internal controls, expansion size estimates were similar between capillary electrophoresis and nanopore sequencing (slope: 0.98 [95% CI, 0.92 to 1.04]; intercept: 10.62 [95% CI, − 7.49 to 27.71]), and gel electrophoresis (slope: 0.94 [95% CI, 0.88 to 1.09]; intercept: 18.81 [95% CI, − 41.93 to 39.15]). Diagnosis was accurately confirmed for all 22 French Canadian patients using this strategy. We also identified 9 French patients (9/53; 17%) and 2 of their relatives who carried an FGF14 (GAA)≥250 expansion. This novel strategy reliably detected and sized FGF14 GAA expansions, and compared favorably to long-read sequencing

    The contribution of Swiss scientists to the assessment of energy metabolism

    Get PDF
    Although Switzerland is considered a small country, it has its share in discoveries, inventions and developments for the assessment of energy metabolism. This includes seminal contributions to respiratory and metabolic physiology and to devices for measuring energy expenditure by direct and indirect calorimetry in vivo in humans and small animals (as well as in vitro in organs/tissues), for the purpose of evaluating the basic nutritional requirements. A strong momentum came during World War II when it was necessary to evaluate the energy requirements of soldiers protecting the country by assessing their energy expenditure, as well as to determine the nutritional needs of the Swiss civil population in time of war when food rationing was necessary to ensure national neutrality and independence. A further impetus came in the 1970s at the start of the obesity epidemics, toward a better understanding of the metabolic basis of obesity, ranging from the development of whole-body concepts to molecular mechanisms. In a trip down memory lane, this review focuses on some of the earlier leading Swiss scientists who have contributed to a better understanding of the field

    Off-Site Regeneration of Hydroprocessing Catalysts Régénération hors-site de catalyseurs d'hydrotraitement

    No full text
    This paper describes the basic phenomena occurring during oxidative regeneration of hydroprocessing catalysts, as well as laboratory experiments studying the removal of carbon and sulfur as a function of temperature. In addition, the evolution of Surface Area (SA) and Dynamic Oxygen Chemisorption (DOC) values versus regeneration temperature applied is discussed. DOC is used to evaluate the dispersion of the active metal-sulfide phase. DOC and SA measurements are complementary techniques for quality assurance of the regeneration process. A substantial loss of SA is found above 600°C while DOC values begin to decrease at lower temperatures. As regards combustion of C and S, it was found that carbon is readily eliminated in a single step between 300 and 450°C. The elimination of sulfur starts as low as 150°C and is terminated only at high temperatures (>600°C). The combustion of C and S, however, seems to be limited by an oxygen diffusion effect into the pores of the catalyst. The EURECAT regeneration process is described as well as an example of an industrial regeneration. Finally, the regulation aspects concerning handling and transport of spent hydroprocessing catalyst are discussed. The safety aspects for unregenerated catalysts are covered by ADR and IMDG codes, but new European legislation exists concerning waste transport including spent catalyst transport. This may result in stricter regulations concerning the transport of spent catalyst from refinery to regeneration facilities in the very near future. <br> Les phénomènes principaux auxquels sont soumis les catalyseurs d'hydrotraitement pendant une régénération oxydante sont décrits, ainsi que des études laboratoires de l'enlèvement du carbone et du soufre en fonction de la température. La qualité du catalyseur est suivie par mesure de la surface spécifique et de la chimisorption d'oxygène (Dynamic Oxygen Chemisorption, DOC). Les mesures de DOC et de surface sont des techniques complémentaires pour le contrôle qualité de la procédure de régénération, la DOC mesurant plus spécifiquement la dispersion de la phase active sulfurée. Une perte importante de surface est observée pour des températures dépassant 600°C tandis que les valeurs de DOC commencent à diminuer à des températures plus basses. En ce qui concerne la combustion du carbone et du soufre, le carbone est éliminé à des températures comprises entre 300 et 450°C, alors que l'élimination du soufre commence dès 150°C et ne se termine qu'à des températures élevées (> 600°C). Néanmoins, la cinétique de combustion semble limitée par un effet de diffusion d'oxygène dans les pores du catalyseur. La procédure de régénération EURECAT est décrite, ainsi qu'un exemple d'une régénération industrielle. Enfin, les aspects réglementaires concernant la manutention et le transport des catalyseurs usés sont abordés. Les aspects concernant la sécurité des transports sont couverts par les codes ADR et IMDG. Une nouvelle législation européenne sur le transport des déchets pourra amener dans un proche avenir des règlements plus sévères en ce qui concerne le transport de catalyseurs usés de la raffinerie aux usines de régénération
    corecore