9 research outputs found

    Évaluation du potentiel antioxydant de la biomasse forestière et marine

    Get PDF
    Depuis que les radicaux libres ont été découverts, leur implication dans certains processus physiologiques, de même que dans une multitude de pathologies, a été mise en évidence. Aussi, plusieurs méthodes ont été mises au point pour mesurer le potentiel antioxydant de molécules d'origine alimentaire, mais aussi pour en découvrir de nouvelles provenant de diverses sources. L'oxydation et la protection contre l'oxydation impliquant plusieurs modes d'action, aussi la qualification du potentiel antioxydant d'une nouvelle molécule demeure problématique. À ce jour, aucune méthode d'évaluation n'est totalement représentative du potentiel antioxydant global d'une molécule donnée; la plupart des méthodes in vitro ne tiennent pas compte du contexte biologique dans lequel les antioxydants seront ultimement utilisés. Aussi, ce document présente une nouvelle méthode originale, à large spectre de sensibilité, réalisé sur des cellules en culture pour détecter et mesurer le potentiel antioxydant de molécules pures ou de mélanges complexes. Cette méthode a été validée dans le cadre de ce projet de maîtrise en l'utilisant conjointement à un autre test couramment cité dans la littérature, à savoir le test ORAC. La méthode a ensuite été utilisée pour mettre en évidence le potentiel antioxydant d'extraits végétaux, plus spécifiquement des extraits de conifères de la forêt boréale. Parmi tous les extraits testés, les extraits de conifères se sont démarqués des extraits d'origine alimentaire (fruits et légumes). De plus, cette méthode originale s'est avérée adéquate pour comparer l'impact de diverses méthodes d'extraction sur le potentiel antioxydant mesuré

    Bio-guided fractionation of Retama raetam (Forssk.) Webb & Berthel polar extracts

    Get PDF
    The fractionation of the methanolic extract (MeOH-E) of Retama raetam (Forssk.) Webb & Berthel and further analysis by thin layer chromatography resulted in four fractions (F1, F2, F3 and F4) that, in parallel with the MeOH-E, were screened for antioxidant, cytotoxic, antidiabetic and antibacterial properties. In addition, chemical characterization of their bioactive molecules was performed using LC-DAD-ESI/MSn. The results indicated that F3 was the most promising regarding antioxidant and cytotoxicity abilities, possibly due to its richness in flavonoids class, particularly isoflavones. In turn, F1 was characterized by the presence of the most polar compounds from MeOHE (organic acids and piscidic acid) and showed promising abilities to inhibit α-amylase, while F4, which contained prenylated flavonoids and furanoflavonoids, was the most active against the testedbacteria. The gathered results emphasize the distinct biological potentials of purified fractions of Retama raetam

    Antioxidant Potential of Bark Extracts from Boreal Forest Conifers

    No full text
    The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS) that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures) on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50), were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol), which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity

    Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins

    No full text
    The haemolysis of red blood cells inducing toxicity in most animals including humans is a major drawback for the clinical development of saponins as antitumour agents. In this study, the haemolytic and cytotoxic activities as well as the membrane cell permeabilization property of a library of 31 semi-synthetic and natural lupane- and oleanane-type saponins were evaluated and the structure-activity relationships were established. It was shown that lupane-type saponins do not exhibit any haemolytic activity and membrane cell permeabilization property at the maximum concentration tested (100 μM) independently of the nature of the sugar moieties. While oleanane-type saponins such as β-hederin (25) and hederacolchiside A1 (27) cause the death of cancer cell lines by permeabilizing the cellular membranes, lupane-type saponins seem to proceed via another mechanism, which could be related to the induction of apoptosis. Altogether, the results indicate that the cytotoxic lupane-type glycosides 10 and 22 bearing an α-l-rhamnopyranose moiety at the C-3 position represent promising antitumour agents for further studies on tumour-bearing mice since they are devoid of toxicity associated with the haemolysis of red blood cells

    Antioxidant and anti-inflammatory activities of quercetin 7-O-β-D-glucopyranoside from the leaves of brasenia schreber

    No full text
    Brasenia schreberi Gmel. (Cabombaceae) is an aquatic plant that grows in eastern Asia, Australia, Africa, and North and Central America. B. schreberi leaf extracts were obtained by sequential solvent extraction with dichloromethane, methanol, and water. The antioxidant potential of each extract was assessed by using the oxygen radical absorbance capacity (ORAC) assay. With this method, methanol and water extracts were found to be active with mean±standard deviation values of 7±2 and 5.1±0.5 μmol Trolox® equivalents (TE)/mg, respectively. Two major phenolic compounds, quercetin-7-O-β-D-glucopyranoside and gallic acid, were respectively isolated from the methanolic and water extracts. Both compounds exhibited antioxidant activities, in particular quercetin-7-O-β-D-glucopyranoside (ORAC value, 18±4 μmol TE/μmol). In contrast to its well-known antioxidant homologue quercetin, quercetin-7-O-β-D-glucopyranoside does not inhibit growth of human fibroblasts (WS-1) or murine macrophages (RAW 264.7). Some flavonoids have been reported to possess beneficial effects in cardiovascular and chronic inflammatory diseases associated with overproduction of nitric oxide. Quercetin-7-O-β-D-glucopyranoside possesses anti-inflammatory activity, inhibiting expression of inducible nitric oxide synthase and release of nitric oxide by lipopolysaccharide-stimulated RAW 264.7 macrophages in a dose-dependent manner. Quercetin-7-O-β-D-glucopyranoside also inhibited overexpression of cyclooxygenase-2 and granulocyte macrophage-colony-stimulating factor

    A new flavonol glycoside from the medicinal halophyte Suaeda fruticosa

    No full text
    A new flavonol glycoside, namely 3-(α-rhamnopyranosyl-(1 → 2)-[β-xylopyranosyl-(1 → 6)]-β-glucopyranosyloxy) isorhamnetin was reported from methanol extracts of aerial parts of Suaeda fruticosa for the first time. In this work, liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy were used to identify this new compound. Structure was elucidated on the basis of extensive spectroscopic analysis, including HSQC, HMBC and 1H–1H COSY. Antioxidant potentialities of a pure compound were evaluated. The estimation of antioxidant capacities using oxygen radical absorbance capacity (ORAC method) and a cell based-assay (WS1) indicated that this new flavonol exhibited the highest antioxidant activities with an ORAC value of 5.0 ± 0.3 μmol Trolox/μmol and inhibited the tBH-induced oxidation of 2′,7′-dichlorofluorescin with an IC50 value of 4.9 ± 0.6 μM

    A new flavonol glycoside from the medicinal halophyte <i>Suaeda fruticosa</i>

    No full text
    <div><p>A new flavonol glycoside, namely 3-(α-rhamnopyranosyl-(1 → 2)-[β-xylopyranosyl-(1 → 6)]-β-glucopyranosyloxy) isorhamnetin was reported from methanol extracts of aerial parts of <i>Suaeda fruticosa</i> for the first time. In this work, liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy were used to identify this new compound. Structure was elucidated on the basis of extensive spectroscopic analysis, including HSQC, HMBC and <sup>1</sup>H–<sup>1</sup>H COSY. Antioxidant potentialities of a pure compound were evaluated. The estimation of antioxidant capacities using oxygen radical absorbance capacity (ORAC method) and a cell based-assay (WS1) indicated that this new flavonol exhibited the highest antioxidant activities with an ORAC value of 5.0 ± 0.3 μmol Trolox/μmol and inhibited the <i>t</i>BH-induced oxidation of 2′,7′-dichlorofluorescin with an IC<sub>50</sub> value of 4.9 ± 0.6 μM.</p></div
    corecore