8,894 research outputs found

    Microwave hydrology: A trilogy

    Get PDF
    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest

    Sparse aperture masking at the VLT II. Detection limits for the eight debris disks stars β\beta Pic, AU Mic, 49 Cet, η\eta Tel, Fomalhaut, g Lup, HD181327 and HR8799

    Full text link
    Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse Aperture masking (SAM) is a high angular resolution technique strongly contributing to probe the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims. We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low mass companions, or to set detection limits. Methods. We observed eight stars presenting debris disks ( β\beta Pictoris, AU Microscopii, 49 Ceti, η\eta Telescopii, Fomalhaut, g Lupi, HD181327 and HR8799) with SAM technique on the NaCo instrument at the VLT. Results. No close companions were detected using closure phase information under 0.5 of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions. We derived upper mass limits on the presence of companions in the area of few times the diffraction limit of the telescope around each target star.Comment: 7 pages, All magnitude detection limits maps are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5

    Searching for visual companions of close Cepheids. VLT/NACO lucky imaging of Y~Oph, FF~Aql, X~Sgr, W~Sgr and η\eta~Aql

    Full text link
    Aims: High-resolution imaging in several photometric bands can provide color and astrometric information of the wide-orbit component of Cepheid stars. Such measurements are needed to understand the age and evolution of pulsating stars. In addition, binary Cepheids have the potential to provide direct and model-independent distances and masses. Methods: We used the NAOS-CONICA adaptive optics instrument (NACO) in the near-infrared to perform a deep search for wide components around the classical Cepheids, Y~Oph, FF~Aql, X~Sgr, W~Sgr, and η\eta~Aql, within a field of view (FoV) of 1.7"×1.7"1.7"\times 1.7" (3.4"×3.4"3.4"\times 3.4" for η\eta~Aql). Results: We were able to reach contrast ΔH=5\Delta H = 5-8\,mag and ΔKs=4\Delta K_\mathrm{s} = 4-7\,mag in the radius range r>0.2"r > 0.2", which enabled us to constrain the presence of wide companions. For Y~Oph, FF~Aql, X~Sgr, W~Sgr, and η\eta~Aql at r>0.2"r > 0.2", we ruled out the presence of companions with a spectral type that is earlier than a B7V, A9V, A9V, A1V, and G5V star, respectively. For 0.1"<r<0.2"0.1"< r < 0.2", no companions earlier than O9V, B3V, B4V, B2V, and B2V star, respectively, are detected. A component is detected close to η\eta~Aql at projected separation ρ=654.7±0.9\rho = 654.7 \pm 0.9\,mas and a position angle PA=92.8±0.1PA = 92.8 \pm 0.1^\circ. We estimated its dereddened apparent magnitude to be mH0=9.34±0.04m_H^0 = 9.34 \pm 0.04 and derived a spectral type that ranges between an F1V and F6V star. Additional photometric and astrometric measurements are necessary to better constrain this star and check its physical association to the η\eta~Aql system.Comment: Accepted for publication in Astronomy and Astrophysic

    Dynamics of active membranes with internal noise

    Full text link
    We study the time-dependent height fluctuations of an active membrane containing energy-dissipating pumps that drive the membrane out of equilibrium. Unlike previous investigations based on models that neglect either curvature couplings or random fluctuations in pump activities, our formulation explores two new models that take both of these effects into account. In the first model, the magnitude of the nonequilibrium forces generated by the pumps is allowed to fluctuate temporally. In the second model, the pumps are allowed to switch between "on" and "off" states. We compute the mean squared displacement of a membrane point for both models, and show that they exhibit distinct dynamical behaviors from previous models, and in particular, a superdiffusive regime specifically arising from the shot noise.Comment: 7 pages, 4 figure

    VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy Orbital architecture analysis with PyAstrOFit

    Full text link
    HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on five consecutive nights during the SPHERE science verification in December 2014. We aim to take full advantage of the SPHERE capabilities to derive accurate astrometric measurements based on H-band images acquired with the Infra-Red Dual-band Imaging and Spectroscopy (IRDIS) subsystem, and to explore the ultimate astrometric performance of SPHERE in this observing mode. We also aim to present a detailed analysis of the orbital parameters for the four planets. We report the astrometric positions for epoch 2014.93 with an accuracy down to 2.0 mas, mainly limited by the astrometric calibration of IRDIS. For each planet, we derive the posterior probability density functions for the six Keplerian elements and identify sets of highly probable orbits. For planet d, there is clear evidence for nonzero eccentricity (e0.35e \simeq 0.35), without completely excluding solutions with smaller eccentricities. The three other planets are consistent with circular orbits, although their probability distributions spread beyond e=0.2e = 0.2, and show a peak at e0.1e \simeq 0.1 for planet e. The four planets have consistent inclinations of about 30deg30\deg with respect to the sky plane, but the confidence intervals for the longitude of ascending node are disjoint for planets b and c, and we find tentative evidence for non-coplanarity between planets b and c at the 2σ2 \sigma level.Comment: 23 pages, 14 figure

    A nullstellensatz for sequences over F_p

    Get PDF
    Let p be a prime and let A=(a_1,...,a_l) be a sequence of nonzero elements in F_p. In this paper, we study the set of all 0-1 solutions to the equation a_1 x_1 + ... + a_l x_l = 0. We prove that whenever l >= p, this set actually characterizes A up to a nonzero multiplicative constant, which is no longer true for l < p. The critical case l=p is of particular interest. In this context, we prove that whenever l=p and A is nonconstant, the above equation has at least p-1 minimal 0-1 solutions, thus refining a theorem of Olson. The subcritical case l=p-1 is studied in detail also. Our approach is algebraic in nature and relies on the Combinatorial Nullstellensatz as well as on a Vosper type theorem.Comment: 23 page
    corecore