3 research outputs found

    Liftings of Nichols algebras of diagonal type III. Cartan type G2G_2

    Get PDF
    We complete the classification of Hopf algebras whose infinitesimal braiding is a principal Yetter-Drinfeld realization of a braided vector space of Cartan type G2G_2 over a cosemisimple Hopf algebra. We develop a general formula for a class of liftings in which the quantum Serre relations hold. We give a detailed explanation of the procedure for finding the relations, based on the recent work of Andruskiewitsch, Angiono and Rossi Bertone.Comment: 54 pages; including an appendix. Final version, to appear in J. Algebr

    On Hopf algebras over quantum subgroups

    No full text
    Using the standard filtration associated with a generalized lifting method, we determine all finite-dimensional Hopf algebras over an algebraically closed field of characteristic zero whose coradical generates a Hopf subalgebra isomorphic to the smallest non-pointed non-cosemisimple Hopf algebra K and the corresponding infinitesimal module is an indecomposable object in YD K K (we assume that the diagrams are Nichols algebras). As a byproduct, we obtain new Nichols algebras of dimension 8 and new Hopf algebras of dimension 64.Facultad de Ciencias Exacta

    Nichols algebras that are quantum planes

    No full text
    We compute all Nichols algebras of rigid braided vector spaces of dimension 2 that admit a non-trivial quadratic relation.Fil: Andruskiewitsch, Nicolas. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Jury Giraldi, Joao Matheus. Universidade Federal do Rio Grande do Sul; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentin
    corecore