8 research outputs found

    Preferential regulation of miRNA targets by environmental chemicals in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs that can degrade their target mRNAs or block their translation. Recent disease research showed the exposure to some environmental chemicals (ECs) can regulate the expression patterns of miRNAs, which raises the intriguing question of how miRNAs and their targets cope with the exposure to ECs throughout the genome.</p> <p>Results</p> <p>In this study, we comprehensively analyzed the properties of genes regulated by ECs (EC-genes) and found miRNA targets were significantly enriched among the EC-genes. Compared with the non-miRNA-targets, miRNA targets were roughly twice as likely to be EC-genes. By investigating the collection methods and other properties of the EC-genes, we demonstrated that the enrichment of miRNA targets was not attributed to either the potential collection bias of EC-genes, the presence of paralogs, longer 3'UTRs or more conserved 3'UTRs. Finally, we identified 1,842 significant concurrent interactions between 407 miRNAs and 497 ECs. This association network of miRNAs-ECs was highly modular and could be separated into 14 interconnected modules. In each module, miRNAs and ECs were closely connected, providing a good method to design accurate miRNA markers for ECs in toxicology research.</p> <p>Conclusions</p> <p>Our analyses indicated that miRNAs and their targets played important roles in cellular responses to ECs. Association analyses of miRNAs and ECs will help to broaden the understanding of the pathogenesis of such chemical components.</p

    The Role of Glypicans in Wnt Inhibitory Factor-1 Activity and the Structural Basis of Wif1's Effects on Wnt and Hedgehog Signaling

    Get PDF
    Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Cell proliferation control by Notch signalling during imaginal discs development in <em>Drosophila</em>

    No full text

    Highlights from the IV International Symposium of Thrombosis and Anticoagulation (ISTA), October 20–21, 2011, Salvador, Bahia, Brazil

    No full text

    3′ end mRNA processing: molecular mechanisms and implications for health and disease

    No full text
    Recent advances in the understanding of the molecular mechanism of mRNA 3′ end processing have uncovered a previously unanticipated integrated network of transcriptional and RNA-processing mechanisms. A variety of human diseases impressively reflect the importance of the precision of the complex 3′ end-processing machinery and gene specific deregulation of 3′ end processing can result from mutations of RNA sequence elements that bind key specific processing factors. Interestingly, more general deregulation of 3′ end processing can be caused either by mutations of these processing factors or by the disturbance of the well-coordinated equilibrium between these factors. From a medical perspective, both loss of function and gain of function can be functionally relevant, and an increasing number of different disease entities exemplifies that inappropriate 3′ end formation of human mRNAs can have a tremendous impact on health and disease. Here, we review the mechanistic hallmarks of mRNA 3′ end processing, highlight the medical relevance of deregulation of this important step of mRNA maturation and illustrate the implications for diagnostic and therapeutic strategies
    corecore