56 research outputs found
Analysis of Gene Expression Using Gene Sets Discriminates Cancer Patients with and without Late Radiation Toxicity
BACKGROUND: Radiation is an effective anti-cancer therapy but leads to severe late radiation toxicity in 5%–10% of patients. Assuming that genetic susceptibility impacts this risk, we hypothesized that the cellular response of normal tissue to X-rays could discriminate patients with and without late radiation toxicity. METHODS AND FINDINGS: Prostate carcinoma patients without evidence of cancer 2 y after curative radiotherapy were recruited in the study. Blood samples of 21 patients with severe late complications from radiation and 17 patients without symptoms were collected. Stimulated peripheral lymphocytes were mock-irradiated or irradiated with 2-Gy X-rays. The 24-h radiation response was analyzed by gene expression profiling and used for classification. Classification was performed either on the expression of separate genes or, to augment the classification power, on gene sets consisting of genes grouped together based on function or cellular colocalization. X-ray irradiation altered the expression of radio-responsive genes in both groups. This response was variable across individuals, and the expression of the most significant radio-responsive genes was unlinked to radiation toxicity. The classifier based on the radiation response of separate genes correctly classified 63% of the patients. The classifier based on affected gene sets improved correct classification to 86%, although on the individual level only 21/38 (55%) patients were classified with high certainty. The majority of the discriminative genes and gene sets belonged to the ubiquitin, apoptosis, and stress signaling networks. The apoptotic response appeared more pronounced in patients that did not develop toxicity. In an independent set of 12 patients, the toxicity status of eight was predicted correctly by the gene set classifier. CONCLUSIONS: Gene expression profiling succeeded to some extent in discriminating groups of patients with and without severe late radiotherapy toxicity. Moreover, the discriminative power was enhanced by assessment of functionally or structurally related gene sets. While prediction of individual response requires improvement, this study is a step forward in predicting susceptibility to late radiation toxicity
Treatment of a hip capsular injury in a professional soccer player with platelet-rich plasma and bone marrow aspirate concentrate therapy
Abstract This report presents a 27-year-old male professional soccer player who developed heterotopic ossification of his hip capsule and gluteus minimus tendon after an arthroscopic hip procedure. After removal of the heterotopic bone, the patient had a symptomatic deficiency of his hip capsule and gluteus minimus tendon. A series of orthobiologic treatments with platelet-rich plasma and bone marrow aspirate concentrate improved the patient's pain and strength as well as the morphologic appearance of the hip capsule and gluteus minimus tendon on magnetic resonance imaging. A series of motion analyses demonstrated significant improvement in his stance-leg ground reaction force and hip abduction, as well as linear foot velocity at ball strike and maximum hip flexion following ball strike in his kicking leg. Level of evidence IV
A comparison of multidisciplinary team residential rehabilitation with conventional outpatient care for the treatment of non-arthritic intra-articular hip pain in UK Military personnel:a protocol for a randomised controlled trial
BACKGROUND: Non-arthritic hip disorders are defined as abnormalities of the articulating surfaces of the acetabulum and femur before the onset of osteoarthritis, including intra-articular structures such as the acetabular labrum and chondral surfaces. Abnormal femoroacetabular morphology is commonly seen in young men who constitute much of the UK military population. Residential multidisciplinary team (MDT) rehabilitation for patients with musculoskeletal injuries has a long tradition in the UK military, however, there are no studies presenting empirical data on the efficacy of a residential MDT approach compared with individualised conventional outpatient treatment. With no available data, the sustainability of this care pathway has been questioned. The purpose of this randomised controlled trial is to compare the effects of a residential multidisciplinary intervention, to usual outpatient care, on the clinical outcomes of young active adults undergoing treatment for non-arthritic intra-articular hip pain. METHODS/DESIGN: The trial will be conducted at the Defence Medical Rehabilitation Centre, Headley Court, UK. One hundred military male participants with clinical indicators of non-arthritic intra-articular hip pain will be randomly allocated to either: (1) 7-day residential multidisciplinary team intervention, n = 50; (2) 6-week physiotherapist-led outpatient intervention (conventional care), n = 50. Measurements will be taken at baseline, post-treatment (1-week MDT group; 6-weeks physiotherapy group), and 12-weeks. The primary outcome measures are the function in daily living sub-scale of the Copenhagen Hip and Groin Outcome Score (HAGOS), the physical function subscale of the Non-arthritic Hip Score (NAHS), and VAS pain scale. Secondary outcomes include objective measures of physical capacity and general health. An intention-to-treat analysis will be performed using linear and mixed models. DISCUSSION: This study will be the first to assess the efficacy of intensive MDT rehabilitation, versus conventional outpatient care, for the management of non-arthritic hip pain. The results from this study will add to the evidence-base and inform clinical practice for the management of intra-articular non-arthritic hip pain and femoroacetabular impingement in young active adults. TRIAL REGISTRATION: ISRCTN Reference: ISRCTN 59255714 dated 11-Nov-2015 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12891-016-1309-z) contains supplementary material, which is available to authorized users
Genetic variation in the odorant receptors family 13 and the mhc loci influence mate selection in a multiple sclerosis dataset
<p>Abstract</p> <p>Background</p> <p>When selecting mates, many vertebrate species seek partners with major histocompatibility complex (MHC) genes different from their own, presumably in response to selective pressure against inbreeding and towards MHC diversity. Attempts at replication of these genetic results in human studies, however, have reached conflicting conclusions.</p> <p>Results</p> <p>Using a multi-analytical strategy, we report validated genome-wide relationships between genetic identity and human mate choice in 930 couples of European ancestry. We found significant similarity between spouses in the MHC at class I region in chromosome 6p21, and at the odorant receptor family 13 locus in chromosome 9. Conversely, there was significant dissimilarity in the MHC class II region, near the <it>HLA-DQA1 </it>and -<it>DQB1 </it>genes. We also found that genomic regions with significant similarity between spouses show excessive homozygosity in the general population (assessed in the HapMap CEU dataset). Conversely, loci that were significantly dissimilar among spouses were more likely to show excessive heterozygosity in the general population.</p> <p>Conclusions</p> <p>This study highlights complex patterns of genomic identity among partners in unrelated couples, consistent with a multi-faceted role for genetic factors in mate choice behavior in human populations.</p
Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons
Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis
Mutations in the HLA class II genes leading to loss of expression of HLA-DR and HLA-DQ in diffuse large B-cell lymphoma
Loss of expression of human leukocyte antigen (HLA) class II molecules on tumor cells affects the onset and modulation of the immune response through lack of activation of CD4(+) T lymphocytes. Previously, we showed that the frequent loss of expression of HLA class II in diffuse large B-cell lymphoma (DLBCL) of the testis and the central nervous system (CNS) is mainly due to homozygous deletions in the HLA region on chromosome band 6p21.3. A minority of cases showed hemizygous deletions or mitotic recombination, implying that mutation of the remaining copy of the class II genes might be involved. Here, we studied three DLBCLs with loss of HLA-DQ expression for mutations in the DQB1 and DQA1 genes and three tumors with loss of HLA-DR expression for mutations in the DRB1 and DRA genes. In one case, a point mutation in exon 2 of the DQB1 gene, leading to the formation of a stop codon, was detected at position 47. In a second case, a stop codon was found at position 11 due to a deletion of 19 bp in exon 1 of the DRA gene. No mutations were found in the promoter sequences of the DRA, DQA1 and DQB1 genes. We conclude that both homozygous deletions and hemizygous deletions or mitotic recombination with mutations of the remaining allele may lead to loss of expression of the HLA class II genes, which is comparable to the mechanisms affecting HLA class I expression in solid cancers
- …