41 research outputs found

    The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions

    Get PDF
    Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2 7 = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism

    Tomato

    No full text
    This chapter focuses on the history and botany, global industry, model plant species, genetics, plant breeding, biotechonology, plant development, vegetative growth, reproductive growth, fruit growth, fruit quality components, and environmental and cultural factors affecting growth and productivity of tomato

    Molecular and Genetic Characterization of a Novel Pleiotropic Tomato-Ripening Mutant

    No full text
    In this paper we describe a novel, dominant pleiotropic tomato (Lycopersicon esculentum)-ripening mutation, Cnr (colorless nonripening). This mutant occurred spontaneously in a commercial population. Cnr has a phenotype that is quite distinct from that of the other pleiotropic tomato-ripening mutants and is characterized by fruit that show greatly reduced ethylene production, an inhibition of softening, a yellow skin, and a nonpigmented pericarp. The ripening-related biosynthesis of carotenoid pigments was abolished in the pericarp tissue. The pericarp also showed a significant reduction in cell-to-cell adhesion, with cell separation occurring when blocks of tissue were incubated in water alone. The mutant phenotype was not reversed by exposure to exogenous ethylene. Crosses with other mutant lines and the use of a restriction fragment length polymorphism marker demonstrated that Cnr was not allelic with the pleiotropic ripening mutants nor, alc, rin, Nr, Gr, and Nr-2. The gene has been mapped to the top of chromosome 2, also indicating that it is distinct from the other pleiotropic ripening mutants. We undertook the molecular characterization of Cnr by examining the expression of a panel of ripening-related genes in the presence and absence of exogenous ethylene. The pattern of gene expression in Cnr was related to, but differed from, that of several of the other well-characterized mutants. We discuss here the possible relationships among nor, Cnr, and rin in a putative ripening signal cascade

    Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome

    No full text
    The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome–fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gap
    corecore