3,162 research outputs found

    Dynamic response of structures to thunderstorm outflows: Response spectrum technique vs time-domain analysis

    Get PDF
    Thunderstorms are transient events. Design wind velocity and wind-induced damage are often related to them. Despite this, research on thunderstorm loading of structures is still fragmentary and uncertain due to their complexity, short duration and small size. These issues make it difficult to set physically realistic and simple models as well as to gather real data. This favoured the implementation of refined methods based on limited measurements. The European Projects \u201cWind and Ports\u201d and \u201cWind, Ports and Sea\u201d realised an extensive monitoring network from which many thunderstorm outflow records were extracted. They were analysed to inspect their characteristics and to formulate methods coherent with measurements. Firstly, the response spectrum technique conceived for earthquakes was extended to thunderstorms. Then, a hybrid simulation strategy was proposed and time-domain integrations of the structural response were applied. This paper provides a joint calibration and advancement of these two methods, leading to results that substantially agree, especially faced with their conceptual and operative diversities. This confirms the potential of the response spectrum technique to become a suitable tool for calculating the thunderstorm loading of structures and the efficiency of hybrid simulations and time-domain analyses to investigate, with a limited computational burden, advanced structural issues

    Platelet – Leukocyte Interactions: Multiple Links Between Inflammation, Blood Coagulation and Vascular Risk

    Get PDF
    The aim of this review is to summarize the contribution of platelets and leukocytes and their interactions in inflammation and blood coagulation and its possible relevance in the pathogenesis of thrombosis. There is some evidence of an association between infection/inflammation and thrombosis. This is likely a bidirectional relationship. The presence of a thrombus may serve as a nidus of infection. Vascular injury indeed promotes platelet and leukocyte activation and thrombus formation and the thrombus and its components facilitate adherence of bacteria to the vessel wall. Alternatively, an infection and the associated inflammation can trigger platelet and leukocyte activation and thrombus formation. In either case platelets and leukocytes co-localize and interact in the area of vascular injury, at sites of inflammation and/or at sites of thrombosis. Following vascular injury, the subendothelial tissue, a thrombogenic surface, becomes available for interaction with these blood cells. Tissue factor, found not only in media and adventitia of the vascular wall, but also on activated platelets and leukocytes, triggers blood coagulation. Vascular-blood cell interactions, mediated by the release of preformed components of the endothelium, is modulated by both cell adhesion and production of soluble stimulatory or inhibitory molecules that alter cell function: adhesion molecules regulate cell-cell contact and facilitate the modulation of biochemical pathways relevant to inflammatory and/or thrombotic processes

    Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments

    Get PDF
    The recent efforts aimed at providing neuroscientific explanations of how people perceive and experience architectural environments have largely justified the initial belief in the value of neuroscience for architecture. However, a systematic development of a coherent theoretical and experimental framework is missing. To investigate the neurophysiological reactions related to the appreciation of ambiances, we recorded the electroencephalographic (EEG) signals in an immersive virtual reality during the appreciation of interior designs. Such data have been analyzed according to the working hypothesis that appreciated environments involve embodied simulation mechanisms and circuits mediating approaching stimuli. EEG recordings of 12 healthy subjects have been performed during the perception of three-dimensional interiors that have been simulated in a CAVE system and judged according to dimensions of familiarity, novelty, comfort, pleasantness, arousal and presence. A correlation analysis on personal judgments returned that scores of novelty, pleasantness and comfort are positively correlated, while familiarity and novelty are in negative way. Statistical spectral maps reveal that pleasant, novel and comfortable interiors produce a de-synchronization of the mu rhythm over left sensorimotor areas. Interiors judged more pleasant and less familiar generate an activation of left frontal areas (theta and alpha bands), along an involvement of areas devoted to spatial navigation. An increase in comfort returns an enhancement of the theta frontal midline activity. Cerebral activations underlying appreciation of architecture could involve different mechanisms regulating corporeal, emotional and cognitive reactions. Therefore, it might be suggested that people's experience of architectural environments is intrinsically structured by the possibilities for action

    The enactive approach to architectural experience: A neurophysiological perspective on embodiment, motivation, and affordances

    Get PDF
    From the enactivist perspective, the way people perceptually experience the world, including architectural spaces, is governed by the dynamic sensorimotor activity of the human organism as a whole and is thereby influenced by the particular conditions of man’s embodiment

    Structural response to non-stationary thunderstorm out-flows: multi-variate vs equivalent mono-variate simulation

    Get PDF
    The European Projects \u201cWind and Ports\u201d and \u201cWind, Ports and Sea\u201d gave rise to an extensive wind monitoring network in the High Tyrrhenian Sea area, from which many records of thunderstorm outflows were extracted. Initially, they were analysed to inspect their statistical properties. Later on, a hybrid multi-variate strategy for simulating the non-stationary wind field of the thunderstorm outflows was formulated and implemented to determine the time-domain response of structures. This paper shows the conceptual and numeric simplifications involved by embedding the equivalent wind spectrum technique, a method developed in a stationary framework, within the above non-stationary formulation. It leads to generate a multi-variate non-stationary wind field through the simulation of a mono-variate stationary process, without any relevant loss of precision

    Graphene-based dental adhesive with anti-biofilm activity

    Get PDF
    BACKGROUND: Secondary caries are considered the main cause of dental restoration failure. In this context, anti-biofilm and bactericidal properties are desired in dental materials against pathogens such as Streptococcus mutans. To this purpose, graphene based materials can be used as fillers of polymer dental adhesives. In this work, we investigated the possibility to use as filler of dental adhesives, graphene nanoplatelets (GNP), a non toxic hydrophobic nanomaterial with antimicrobial and anti-biofilm properties. RESULTS: Graphene nanoplatelets have been produced starting from graphite intercalated compounds through a process consisting of thermal expansion and liquid exfoliation. Then, a dental adhesive filled with GNPs at different volume fractions has been produced through a solvent evaporation method. The rheological properties of the new experimental adhesives have been assessed experimentally. The adhesive properties have been tested using microtensile bond strength measurements (µ-TBS). Biocidal activity has been studied using the colony forming units count (CFU) method. The anti-biofilm properties have been demonstrated through FE-SEM imaging of the biofilm development after 3 and 24 h of growth. CONCLUSIONS: A significantly lower vitality of S. mutans cells has been demonstrated when in contact with the GNP filled dental adhesives. Biofilm growth on adhesive-covered dentine tissues demonstrated anti-adhesion properties of the produced materials. µ-TBS results demonstrated no significant difference in µ-TBS between the experimental and the control adhesive. The rheology tests highlighted the necessity to avoid low shear rate regimes during adhesive processing and application in clinical protocol, and confirmed that the adhesive containing the 0.2%wt of GNPs possess mechanical properties comparable with the ones of the control adhesive

    Electroencephalographic correlates of sensorimotor integration and embodiment during the appreciation of virtual architectural environments

    Get PDF
    Nowadays there is the hope that neuroscientific findings will contribute to the improvement of building design in order to create environments which satisfy man's demands. This can be achieved through the understanding of neurophysiological correlates of architectural perception. To this aim, the electroencephalographic (EEG) signals of 12 healthy subjects were recorded during the perception of three immersive virtual reality environments (VEs). Afterwards, participants were asked to describe their experience in terms of Familiarity, Novelty, Comfort, Pleasantness, Arousal, and Presence using a rating scale from 1 to 9. These perceptual dimensions are hypothesized to influence the pattern of cerebral spectral activity, while Presence is used to assess the realism of the virtual stimulation. Hence, the collected scores were used to analyze the Power Spectral Density (PSD) of the EEG for each behavioral dimension in the theta, alpha and mu bands by means of time-frequency analysis and topographic statistical maps. Analysis of Presence resulted in the activation of the frontal-midline theta, indicating the involvement of sensorimotor integration mechanisms when subjects expressed to feel more present in the VEs. Similar patterns also characterized the experience of familiar and comfortable VEs. In addition, pleasant VEs increased the theta power across visuomotor circuits and activated the alpha band in areas devoted to visuospatial exploration and processing of categorical spatial relations. Finally, the de-synchronization of the mu rhythm described the perception of pleasant and comfortable VEs, showing the involvement of left motor areas and embodied mechanisms for environment appreciation. Overall, these results show the possibility to measure EEG correlates of architectural perception involving the cerebral circuits of sensorimotor integration, spatial navigation, and embodiment. These observations can help testing architectural hypotheses in order to design environments matching the changing needs of humans

    Herbicidal potential of phenolic and cyanogenic glycoside compounds isolated from Mediterranean plants

    Get PDF
    This study was conducted to test five phenolic and cyanogenic glycoside compounds for growth regulating activity on the germination and seedling growth of Portulaca oleracea L., Amaranthus retroflexus L., and Lactuca sativa L. at different concentrations. Overall, the tested compounds revealed growth-regulating activity in species-specific and concentration dependent manner. The most powerful effects were much pronounced on seedling growth rather than on germination. In fact, the compounds 1 (amygdalin) and 2 (salicylic acid) were the most phytotoxic on root growth of  P. oleracea, and they caused, respectively, an inhibition of 55% and 85% at 10-6 M and 10-4 M. On the other hand, the lettuce seedling growth was more sensitive than weeds growth to the compounds 4 (3,4,5-trihydroxybenzoic acid) and 5 (7-hydroxycoumarin), which exhibited a moderate inhibition at the highest concentration. This selectivity and specificity of these active allelopathic compounds could be very useful for the development of new application of natural substances to control the aggressive weeds. Thus, our findings suggest that the integration of these compounds may maintain irrigation system and reduce the massive use of agrochemicals in agro-ecosystems
    • …
    corecore