30 research outputs found

    Non-Newtonian turbulent jets at low-Reynolds number

    Get PDF
    We perform direct numerical simulations of planar jets of non-Newtonian fluids at low Reynolds number, in typical laminar conditions for a Newtonian fluid. We select three different non-Newtonian fluid models mainly characterized by shear-thinning (Carreau), viscoelasticity (Oldroyd-B) and shear-thinning and viscoelasticity together (Giesekus), and perform a thorough analysis of the resulting flow statistics. We characterize the fluids using the parameter , defined as the ratio of the relevant non-Newtonian time scale over a flow time scale. We observe that, as is increased, the jet transitions from a laminar flow at low , to a turbulent flow at high . We show that the different non-Newtonian features and their combination give rise to rather different flowing regimes, originating from the competition of viscous, elastic and inertial effects. We observe that both viscoelasticity and shear-thinning can develop the instability and the consequent transition to a turbulent flowing regime; however, the purely viscoelastic Oldroyd-B fluid exhibits the onset of disordered fluid motions at a lower value of than what observed for the purely shear-thinning Carreau fluid. When the two effects are both present, an intermediate condition is found, suggesting that, in this case, the shear-thinning feature is acting against the fluid elasticity. Despite the qualitative differences observed in the flowing regime, the bulk statistics, namely the centerline velocity and jet thickness, follow almost the same power-law scalings obtained for laminar and turbulent Newtonian planar jets. The simulations reported here are, to the best of our knowledge, the first direct numerical simulations showing the appearance of turbulence at low Reynolds number in jets, with the turbulent motions fully induced by the non-Newtonian properties of the fluid, since the Newtonian case at the same Reynolds number is characterized by steady, laminar flow.journal articl

    Non-Newtonian turbulent jets at low-Reynolds number

    Full text link
    We perform direct numerical simulations of planar jets of non-Newtonian fluids at low Reynolds number, in typical laminar conditions for a Newtonian fluid. We select three different non-Newtonian fluid models characterized by shear-thinning (Carreau), viscoelasticity (Oldroyd-B) and shear-thinning and viscoelasticity together (Giesekus), and perform a thorough analysis of the resulting flow statistics. We observe that, as the Weissenberg number is increased, the jet transitions from a laminar flow at low Weissenberg number, to a turbulent flow at high Weissenberg number. We show that the different non-Newtonian features and their combination give rise to rather different flowing regimes, originating from the competition of viscous, elastic and inertial effects. We observe that both viscoelasticity and shear-thinning can develop the instability and the consequent transition to a turbulent flowing regime; however, the purely viscoelastic Oldroyd-B fluid exhibits the onset of disordered fluid motions at a lower Weissenberg number than what observed for the purely shear-thinning Carreau fluid. When the two effects are both present, an intermediate condition is found, suggesting that, in this case, the shear-thinning feature is acting against the fluid elasticity. Despite the qualitative differences observed in the flowing regime, the bulk statistics, namely the centerline velocity and jet thickness, follow almost the same power-law scalings obtained for laminar and turbulent Newtonian planar jets

    Effect of surfactant-laden droplets on turbulent flow topology

    Full text link
    In this work, we investigate flow topology modifications produced by a swarm of large surfactant-laden droplets released in a turbulent channel flow. Droplets have same density and viscosity of the carrier fluid, so that only surface tension effects are considered. We run one single-phase flow simulation at Reτ=ρuτh/μ=300Re_\tau=\rho u_\tau h / \mu = 300, and ten droplet-laden simulations at the same ReτRe_\tau with a constant volume fraction equal to Φ5.4%\Phi \simeq5.4\%. For each simulation, we vary the Weber number (WeWe, ratio between inertial and surface tension forces) and the elasticity number (βs\beta_s, parameter that quantifies the surface tension reduction). We use direct numerical simulations of turbulence coupled with a phase field method to investigate the role of capillary forces (normal to the interface) and Marangoni forces (tangential to the interface) on turbulence (inside and outside the droplets). As expected, due to the low volume fraction of droplets, we observe minor modifications in the macroscopic flow statistics. However, we observe major modifications of the vorticity at the interface and important changes in the local flow topology. We highlight the role of Marangoni forces in promoting an elongational type of flow in the dispersed phase and at the interface. We provide detailed statistical quantification of these local changes as a function of the Weber number and elasticity number, which may be useful for simplified models

    Mass-conservation-improved phase field methods for turbulent multiphase flow simulation

    Get PDF
    The phase field method has emerged as a powerful tool for the simulation of multiphase flow. The method has great potential for further developments and applications: it has a sound physical basis, and when associated with a highly refined grid, physics is accurately rendered. However, in many cases, especially when dealing with turbulent flows, the available computational resources do not allow for a complete resolution of the interfacial phenomena and some undesired effects such as shrinkage, coarsening and misrepresentation of surface tension forces and thermo-physical properties can affect the accuracy of the simulations. In this paper, we present two improved phase field method formulations (profile-corrected and flux-corrected), specifically developed to overcome the previously mentioned drawbacks, and we benchmark their performance versus the classic one. The formulations are first tested considering the rise of a bubble in a quiescent fluid and the interaction of two droplets in laminar shear flow; then, their performances are compared in the simulation of a droplet-laden turbulent flow. The aim of this work is to review and benchmark the different phase field method formulations, with the final goal of laying down useful guidelines for the accurate simulation of turbulent multiphase flow with the phase field method

    Morphology of clean and surfactant-laden droplets in homogeneous isotropic turbulence

    Full text link
    We perform direct numerical simulations of surfactant-laden droplets in homogeneous-isotropic turbulence with Taylor Reynolds number Reλ180Re_\lambda\approx180. Effects of surfactant on the droplet and local flow statistics are well approximated using a lower, averaged value of surface tension, allowing us to extend the framework developed by Kolmogorov (1949) and Hinze (1955) for surfactant-free bubbles to surfactant-laden droplets. We find the Kolmogorov-Hinze scale (dHd_H) is indeed a pivotal length scale in the droplets' dynamics, separating the coalescence-dominated and the breakage-dominated regimes in the droplet size distribution. We see that droplets smaller than dHd_H have spheroid-like shapes, whereas larger droplets have long convoluted filamentous shapes with diameters equal to dHd_H. As a result, droplets smaller than dHd_H have areas that scale as d2d^2, while larger droplets have areas that scale as d3d^3, where dd is the droplet equivalent diameter. We further characterise the filamentous droplets by computing the number of handles (loops of the dispersed phase extending into the carrier phase) and voids (regions of the carrier phase enclosed by the dispersed phase) on each droplet. The number of handles per unit length of filament (0.06dH10.06d_H^{-1}) scales inversely with surface tension, while the number of voids is independent of surface tension. Handles are indeed an unstable feature of the interface and are destroyed by the restoring effect of surface tension, whereas voids can move freely inside the droplets.Comment: 31 pages, 13 figure

    Turbulent Flows With Drops and Bubbles: What Numerical Simulations Can Tell Us—Freeman Scholar Lecture

    Get PDF
    Turbulent flows laden withlarge, deformable drops or bubbles are ubiquitous in nature and a number of industrial processes. These flows are characterized by physics acting at many different scales: from the macroscopic length scale of the problem down to the microscopic molecular scale of the interface. Naturally, the numerical resolution of all the scales of the problem, which span about eight to nine orders of magnitude, is not possible, with the consequence that numerical simulations of turbulent multiphase flows impose challenges and require methods able to capture the multiscale nature of the flow. In this review, we start by describing the numerical methods commonly employed and by discussing their advantages and limitations, and then we focus on the issues arising from the limited range of scales that can be possibly solved. Ultimately, the droplet size distribution, a key result of interest for turbulent multiphase flows, is used as a benchmark to compare the capabilities of the different methods and to discuss the main insights that can be drawn from these simulations. Based on this, we define a series of guidelines and best practices that we believe to be important in the analysis of the simulations and the development of new numerical methods

    Short-range exposure to airborne virus transmission and current guidelines

    Get PDF
    After the Spanish flu pandemic, it was apparent that airborne transmission was crucial to spreading virus contagion, and research responded by producing several fundamental works like the experiments of Duguid [J. P. Duguid, J. Hyg. 44, 6 (1946)] and the model of Wells [W. F. Wells, Am. J. Hyg. 20, 611–618 (1934)]. These seminal works have been pillars of past and current guidelines published by health organizations. However, in about one century, understanding of turbulent aerosol transport by jets and plumes has enormously progressed, and it is now time to use this body of developed knowledge. In this work, we use detailed experiments and accurate computationally intensive numerical simulations of droplet-laden turbulent puffs emitted during sneezes in a wide range of environmental conditions. We consider the same emission—number of drops, drop size distribution, and initial velocity—and we change environmental parameters such as temperature and humidity, and we observe strong variation in droplets’ evaporation or condensation in accordance with their local temperature and humidity microenvironment. We assume that 3% of the initial droplet volume is made of nonvolatile matter. Our systematic analysis confirms that droplets’ lifetime is always about one order of magnitude larger compared to previous predictions, in some cases up to 200 times. Finally, we have been able to produce original virus exposure maps, which can be a useful instrument for health scientists and practitioners to calibrate new guidelines to prevent short-range airborne disease transmission

    Targeting lysine-specific demethylase 1 (KDM1A/LSD1) impairs colorectal cancer tumorigenesis by affecting cancer cells stemness, motility, and differentiation

    Get PDF
    : Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse

    Minimally invasive vs. open segmental resection of the splenic flexure for cancer: a nationwide study of the Italian Society of Surgical Oncology-Colorectal Cancer Network (SICO-CNN)

    Get PDF
    Background Evidence on the efficacy of minimally invasive (MI) segmental resection of splenic flexure cancer (SFC) is not available, mostly due to the rarity of this tumor. This study aimed to determine the survival outcomes of MI and open treatment, and to investigate whether MI is noninferior to open procedure regarding short-term outcomes. Methods This nationwide retrospective cohort study included all consecutive SFC segmental resections performed in 30 referral centers between 2006 and 2016. The primary endpoint assessing efficacy was the overall survival (OS). The secondary endpoints included cancer-specific mortality (CSM), recurrence rate (RR), short-term clinical outcomes (a composite of Clavien-Dindo > 2 complications and 30-day mortality), and pathological outcomes (a composite of lymph nodes removed >= 12, and proximal and distal free resection margins length >= 5 cm). For these composites, a 6% noninferiority margin was chosen based on clinical relevance estimate. Results A total of 606 patients underwent either an open (208, 34.3%) or a MI (398, 65.7%) SFC segmental resection. At univariable analysis, OS and CSM were improved in the MI group (log-rank test p = 0.004 and Gray's tests p = 0.004, respectively), while recurrences were comparable (Gray's tests p = 0.434). Cox multivariable analysis did not support that OS and CSM were better in the MI group (p = 0.109 and p = 0.163, respectively). Successful pathological outcome, observed in 53.2% of open and 58.3% of MI resections, supported noninferiority (difference 5.1%; 1-sided 95%CI - 4.7% to infinity). Successful short-term clinical outcome was documented in 93.3% of Open and 93.0% of MI procedures, and supported noninferiority as well (difference - 0.3%; 1-sided 95%CI - 5.0% to infinity). Conclusions Among patients with SFC, the minimally invasive approach met the criterion for noninferiority for postoperative complications and pathological outcomes, and was found to provide results of OS, CSM, and RR comparable to those of open resection

    The Role of Risk Aversion and Lay Risk in the Probabilistic Externality Assessment for Oil Tanker Routes to Europe

    Full text link
    corecore