36 research outputs found

    Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data

    Get PDF
    This study aimed at evaluating the potential of machine learning (ML) for estimating forest biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported Vector Regressions (SVRs), were implemented and validated using the airborne polarimetric SAR data derived from the AfriSAR, BioSAR, and TropiSAR campaigns. These datasets, composed of polarimetric airborne SAR data at P-band and corresponding biomass values from in situ and LiDAR measurements, were made available by the European Space Agency (ESA) in the framework of the Biomass Retrieval Algorithm Inter-Comparison Exercise (BRIX). The sensitivity of the SAR measurements at all polarizations to the target biomass was evaluated on the entire set of data from all the campaigns, and separately on the dataset of each campaign. Based on the results of the sensitivity analysis, the retrieval was attempted by implementing general algorithms, using the entire dataset, and specific algorithms, using data of each campaign. Algorithm inputs are the SAR data and the corresponding local incidence angles, and output is the estimated biomass. To allow the comparison, both ANN and SVR were trained using the same subset of data, composed of 50% of the available dataset, and validated on the remaining part of the dataset. The validation of the algorithms demonstrated that both machine-learning methods were able to estimate the forest biomass with comparable accuracies. In detail, the validation of the general ANN algorithm resulted in a correlation coefficient R = 0.88, RMSE = 60 t/ha, and negligible BIAS, while the specific ANN for data obtained R from 0.78 to 0.94 and RMSE between 15 and 50 t/ha, depending on the dataset. Similarly, the general SVR was able to estimate the target parameter with R = 0.84, RMSE = 69 t/ha, and BIAS negligible, while the specific algorithms obtained 0.22 ≤ R ≤ 0.92 and 19 ≤ RMSE ≤ 70 (t/ha). The study also pointed out that the computational cost is similar for both methods. In this respect, the training is the only time-demanding part, while applying the trained algorithm to the validation set or to any other dataset occurs in near real time. As a final step of the study, the ANN and SVR algorithms were applied to the available SAR images for obtaining biomass maps from the available SAR images

    The Archives of Ebla : An empire inscribed in clay

    No full text
    New Yorkxi, 347 p.; 23 cm

    Ebla : A New Look at History

    No full text
    Baltimorex, 290 p.; 23 cm

    Multidisciplinary diagnostic approach combining fine needle aspiration, core needle biopsy and imaging features of a presacral myelolipoma in a patient with concurrent breast cancer

    No full text
    Myelolipomas are uncommon benign tumors composed of mature adipose tissue mixed with hematopoietic elements; these tumors can occur in both the adrenal glands and extra-adrenal locations, the presacral region being the most frequent extra-adrenal site. We present a case of presacral myelolipoma diagnosed by fine needle aspiration (FNA) and core needle biopsy (CNB) in a 55-year-old woman with concurrent invasive ductal breast cancer. TC and RM imaging were consistent with the diagnosis of presacral myelolipoma. The lesion was discovered incidentally during the staging procedure for breast malignancy. The purpose of our work is to describe the FNA and CNB finding in combination with the imaging features of this uncommon lesion

    Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data

    No full text
    This study aimed at evaluating the potential of machine learning (ML) for estimating forest biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported Vector Regressions (SVRs), were implemented and validated using the airborne polarimetric SAR data derived from the AfriSAR, BioSAR, and TropiSAR campaigns. These datasets, composed of polarimetric airborne SAR data at P-band and corresponding biomass values from in situ and LiDAR measurements, were made available by the European Space Agency (ESA) in the framework of the Biomass Retrieval Algorithm Inter-Comparison Exercise (BRIX). The sensitivity of the SAR measurements at all polarizations to the target biomass was evaluated on the entire set of data from all the campaigns, and separately on the dataset of each campaign. Based on the results of the sensitivity analysis, the retrieval was attempted by implementing general algorithms, using the entire dataset, and specific algorithms, using data of each campaign. Algorithm inputs are the SAR data and the corresponding local incidence angles, and output is the estimated biomass. To allow the comparison, both ANN and SVR were trained using the same subset of data, composed of 50% of the available dataset, and validated on the remaining part of the dataset. The validation of the algorithms demonstrated that both machine-learning methods were able to estimate the forest biomass with comparable accuracies. In detail, the validation of the general ANN algorithm resulted in a correlation coefficient R = 0.88, RMSE = 60 t/ha, and negligible BIAS, while the specific ANN for data obtained R from 0.78 to 0.94 and RMSE between 15 and 50 t/ha, depending on the dataset. Similarly, the general SVR was able to estimate the target parameter with R = 0.84, RMSE = 69 t/ha, and BIAS negligible, while the specific algorithms obtained 0.22 ≤ R ≤ 0.92 and 19 ≤ RMSE ≤ 70 (t/ha). The study also pointed out that the computational cost is similar for both methods. In this respect, the training is the only time-demanding part, while applying the trained algorithm to the validation set or to any other dataset occurs in near real time. As a final step of the study, the ANN and SVR algorithms were applied to the available SAR images for obtaining biomass maps from the available SAR images

    Multicentric encapsulated papillary oncocytic neoplasm of the thyroid: A case diagnosed by a combined cytological, histological, immunohistochemical, and molecular approach

    No full text
    Fine-needle aspiration (FNA) diagnosis of oncocytic lesions is challenging. In fact, oncocytic changes occur in inflammatory, hyperplastic, and neoplastic settings, including both benign and malignant tumors. The rare oncocytic variant of papillary thyroid carcinoma (PTC), shows papillae composed by cells with large oncocytic granular cytoplasm featuring clear PTC nuclear features. A morphological similar, but biologically distinct lesion, is the encapsulated papillary oncocytic neoplasia. Here, we first report on FNA, its cytological features together with histological, immunohistochemical, and molecular correlates

    Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils

    No full text
    The sensitivity of bistatic scattering coefficient sigma degrees to soil moisture content (SMC) and surface roughness was investigated by means of model simulations of the incoherent scattered fields performed with the advanced integral equation model (AIEM) and the second order small perturbation model (SPM). The study was performed by simulating scattering on the whole upper half space, for different values of incident angles. The achieved results, represented as maps of sigma degrees as a function of azimuth and zenith angles, were evaluated by means of a quality index which takes into consideration the effect of roughness on SMC measurement. The sensitivity analysis has pointed out that for measuring SMC a bistatic observation, by itself or combined with the monostatic one, can make appreciable improvements with respect to classical monostatic radar. Appendix A contains the AIEM formulas corrected for several typographical errors present in the specific literature
    corecore