76 research outputs found

    Strong coupling of monolayer WS2 excitons and surface plasmon polaritons in a planar Ag/WS2 hybrid structure

    Full text link
    Monolayer (1L) transition metal dichalcogenides (TMDC) are of strong interest in nanophotonics due to their narrow-band intense excitonic transitions persisting up to room temperature. When brought into resonance with surface plasmon polariton (SPP) excitations of a conductive medium opportunities for studying and engineering strong light-matter coupling arise. Here, we consider a most simple geometry, namely a planar stack composed of a thin silver film, an Al2O3 spacer and a monolayer of WS2. We perform total internal reflection ellipsometry which combines spectroscopic ellipsometry with the Kretschmann-Raether-type surface plasmon resonance configuration. The combined amplitude and phase response of the reflected light at varied angle of incidence proves that despite the atomic thinness of 1L-WS2, the strong coupling (SC) regime between A excitons and SPPs propagating in the thin Ag film is reached. The phasor representation of rho corroborates SC as rho undergoes a topology change indicated by the occurrence of a double point at the cross over from the weak to the strong coupling regime. Our findings are validated by both analytical transfer matrix method calculations and numerical Maxwell simulations. The findings open up new perspectives for applications in plasmonic modulators and sensors benefitting from the tunability of the optical properties of 1L-TMDCs by electric fields, electrostatic doping, light and the chemical environment.Comment: 15 pages, 3 figure

    Demonstrating the high sensitivity of MoS2 monolayers in direct x-ray detectors

    Get PDF
    Two-dimensional transition metal dichalcogenides (TMDCs) are demonstrated to be appealing semiconductors for optoelectronic applications, thanks to their remarkable properties in the ultraviolet-visible spectral range. Interestingly, TMDCs have not yet been characterized when exposed to x rays, although they would be ideal candidates for optoelectronic applications in this spectral range. They benefit from the high cross section of the constituent heavy atoms, while keeping the absorption very low, due to the ultrathin structure of the film. This encourages the development of photodetectors based on TMDCs for several applications dealing with x rays, such as radioprotection, medical treatments, and diagnosis. Given the atomic thickness of TMDCs, they can be expected to perform well at low dose measurements with minimal perturbation of the radiation beam, which is required for in vivo applications. In this paper, the use of TMDCs as active materials for direct x-ray detection is demonstrated, using a photodetector based on a MoS2 monolayer (1L-MoS2). The detector shows a response to x rays in the range of 101–102 keV, at dose rates as low as fractions of mGy/s. The sensitivity of 1L-MoS2 reaches values in the range of 108–109 ”C Gy−1 cm−3, overcoming the values reported for most of the organic and inorganic materials. To improve the x-ray photoresponse even further, the 1L-MoS2 was coupled with a polymeric film integrating a scintillator based on terbium-doped gadolinium oxysulfide (Gd2O2S:Tb). The resulting signal was three times larger, enabled by the indirect x ray to visible photoconversion mechanism. This paper might pave the way toward the production of ultrathin real-time dosimeters for in vivo applications.Peer Reviewe

    Using Combinatorial Inkjet Printing for Synthesis and Deposition of Metal Halide Perovskites in Wavelength‐Selective Photodetectors

    Get PDF
    Metal halide perovskites have received great attention in recent years, predominantly due to the high performance of perovskite solar cells. The versatility of the material, which allows the tunability of the bandgap, has led to its use in light-emitting diodes, photo, and X-ray detectors, among other optoelectronic device applications. Specifically in photodetectors, the tunability of the bandgap allows fabrication of spectrally selective devices. Utilizing a combinatorial inkjet printing approach, multiple perovskite compositions absorbing at specific wavelengths in a single printing step are fabricated. The drop-on-demand capabilities of inkjet printing enable the deposition of inks in a precise ratio to produce specific perovskite compositions in the printed thin film. By controlling the halide ratio in the compositions, a mixed halide gradient ranging from pure MAPbI3 via MAPbBr3 to MAPbCl3 is produced. The tunability in the absorption onset from 410 to 790 nm is demonstrated, covering the whole visible spectrum, with a precision of 8 nm steps for MAPb(BrxCl1−x)3 compositions. From this range of mixed halide perovskites, photodetectors which show spectral selectivity corresponding to the measured absorption onset are demonstrated, paving the way for use in a printed visible light spectrometer without the need for a dispersion element.Peer Reviewe

    Blue cadmium-free and air-fabricated quantum dot light-emitting diodes

    Get PDF
    The article processing charge was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 491192747 and the Open Access Publication Fund of Humboldt-UniversitĂ€t zu Berlin.Quantum dot (QD) materials have found increasing use in display applications because of their high color purity and fluorescence quantum yield, enabling devices with higher brightness and efficiency. However, to access large-area printing and coating methods that are carried out in ambient conditions, it is necessary to, first, move away from toxic cadmium, and second, to target materials that can be air-processed. Herein, we synthesize zinc selenide-based blue QD material and air-fabricate light-emitting diodes (LEDs) and single-carrier devices. The encapsulated devices were also measured under ambient conditions. Multi-shell-structured ZnSeTe/ZnSe/ZnS (core/shell/shell) QDs show pure deep blue/purple fluorescence emission with a high photoluminescence quantum yield of 78%. The blue QD-LED devices are fabricated in a conventional structure with bottom light emission with two electron transport materials (ZnO and ZnMgO). The QD-LED devices with ZnO electron transport layer show a maximum luminance of ∌6200 cd m−2 at 9 V with a turn-on voltage of 3.5 V and current efficacy of 0.38 cd A−1, while with ZnMgO electron transport layer, the devices show a maximum luminance of 3000 cd m−2 at 7 V with a turn-on voltage of 3 V and current efficacy of 0.6 cd A−1. Electron-only and hole-only devices were fabricated to show and confirm the underlying charge transport mechanisms. To our knowledge, these results show for the first-time air-fabricated ZnSe-based QD-LEDs, paving the way for scaling up display applications and moving toward high-performance printed electronics.Peer Reviewe

    Simultaneous Effect of Ultraviolet Radiation and Surface Modification on the Work Function and Hole Injection Properties of ZnO Thin Films

    Get PDF
    The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Electronic and electrical properties of organic semiconductor/metal nanoparticles structures

    Get PDF
    Der zunehmende Bedarf nach digitalen Speichermedien macht die Erforschung von neuen Materialien fĂŒr zukĂŒnftige Technologien von nichtflĂŒchtigen Speichern nötig. HierfĂŒr eignen sich zum Beispiel Metall-Nanopartikel, die in organischen Halbleiterschichten eingebettet sind. Aufgrund der bistabilen Schaltbarkeit der LeitfĂ€higkeit von Metall-Nanopartikeln lassen sie sich in AbhĂ€ngigkeit der elektrischen Umgebungsbedingungen entweder in einen niedrig- oder einen hochleitenden Zustand schalten. Bisher wurden verschiedene Modelle entwickelt, um den Schaltmechanismus von Speichern mit einem organischen Matrixmaterial zu erklĂ€ren, jedoch fehlt bislang ein konsistentes Bild zum VerstĂ€ndnis des Schaltvorgangs. Die vorliegende Arbeit  untersucht die Rolle des Raumladungsfeldes ausgehend von Metall-Nanopartikeln in Bauelementen. Dazu wurde eine Reihe von Experimenten zur Bestimmung der elektronischen und elektrischen Eigenschaften durchgefĂŒhrt, um die tatsĂ€chliche Rolle des Raumladungsfeldes aufzuklĂ€ren. Mit Hilfe von Röntgen- und UV-Photoelektronenspektroskopie wurde die Wechselwirkung zwischen den Metall-Nanopartikeln und den prototypischen organischen Halbleiterschichten detailliert untersucht. Unter Verwendung der bereits untersuchten Materialien wurden Bauelemente hergestellt und charakterisiert. Die Ergebnisse zeigen, dass der allgemein vorgeschlagene Mechanismus bezĂŒglich der Aufladung/Entladung von Metall-Nanopartikeln als Ursache fĂŒr die elektrische BistabiliĂ€t in einem zweipoligen Bauteil ausgeschlossen werden kann. Stattdessen stĂŒtzt dieses Ergebnis den alternativen Mechanismus der Filamentbildung. Zur Untersuchung der Skalierbarkeit der Speicher im Nanometerbereich wurden die Strukturen durch das Abscheiden der Materialien bei streifendem Einfall prĂ€pariert. Die entsprechenden Nanospeicher wurden elektrisch charakterisiert und zeigten BistabilitĂ€t. Folglich sind diese Nanspeicher besonders attraktiv fĂŒr zukĂŒnftige Technologien in Hinblick auf hohe Speicherdichten.The increasing need to store digital information has triggered research into the exploration of new materials for future non-volatile memory (NVM) technologies. For instance, metal nanoparticles (MNPs) embedded into organic semiconductors are suitable for novel memory applications because they were found to display bistable resistive switching. Different switching models were hitherto developed to explain the fundamental mechanisms at work in resistive NVMs. This thesis explores specifically the role of space-charge field due to the charging of MNPs as rationale for resistive switching in two-terminal devices. A series of experiments on the electronic and electrical properties of devices were conducted in order to reveal whether this mechanism is, indeed, at play in resistance switching. Photoelectron spectroscopy provided detailed information about the interaction between gold nanoparticles (AuNPs) with prototypical organic semiconductors used in optoelectronics. The study of the electronic valence structures provided evidence of a space-charge due to the charging of AuNPs. Furthermore, it is found that charge-neutrality of AuNPs can be dynamically re-established upon illumination, through electron transfer from excitons. Devices were built with the same materials investigated by photoemission spectroscopy and electrical characterization was conducted. Despite the previously demonstrated ability to optically change the charging state of the AuNPs, the devices do not display any bistability. This finding provides evidence that the commonly proposed charging/decharging mechanism of MNPs can be excluded as cause for electrical bistability in NVM devices. In order to explore the scaling of resistive NVMs into the nanometric range, glancing angle deposition technique was employed. The nano-NVMs were electrically characterized and it is proved to manifest resistive bistability. These finding make nano-NVMs highly appealing for future high-density memory technology

    View of the Cortile del Belvedere from the Vatican Palace

    No full text
    historical view, view from the Palace by G. A. Dosi

    Thermally Activated Gold-Mediated Transition Metal Dichalcogenide Exfoliation and a Unique Gold-Mediated Transfer

    Get PDF
    Layered materials like transition metal dichalcogenides (TMDCs) enable exciting new physics in their 2D limit. Combined with successful demonstrations of 2D transistors and devices, the need for high-quality large-scale monolayers increases. In this light, scalable gold-mediated exfoliations attract broad attention to supersede the traditional scotch tape method as a means for high-quality materials. Gold proved to be suitably adhesive for the exfoliation of several 2D materials, including TMDCs. Previously reported methods rely on a simple press and peel mechanism. However, herein, a gold-mediated exfoliation enabled by low-temperature annealing is presented for the first time. This simple modification potentially increases the range of external conditions under which gold-mediated exfoliations operate in a robust manner. The exfoliation achieves scaling with parent crystal areas, rendering it on par with previously reported methods. On top of that, a unique gold-mediated transfer concept is introduced, where gold is repurposed as a metallic (polymer-free) transfer membrane. The transfer allows the deterministic and clean relocation of the exfoliated monolayers onto technologically relevant substrates like SiO2/Si. The process is benchmarked using MoS2 as the prototypical TMDC and monolayer areas up to ≈80 mm2 are successfully exfoliated and transferred.Peer Reviewe
    • 

    corecore