301 research outputs found

    The Use of Spectrophotometry UV-Vis for the Study of Porphyrins

    Get PDF
    In the porphyrins study, the evaluation of wavelength shift of adsorption bands and the absorbance changes as function of pH, temperature, solvent change, reaction with metal ions and other parameters permits to obtained accurate information about equilibrium, complexation, kinetic and aggregation. This chapter of the book, resumes the best successes in the use of UV-Vis spectrophotometry for explained the chemical characteristics of this extraordinary group of natural occurring molecules and clarifies the potential of these molecules in many fields of application

    Equilibrium and Kinetic Aspects in the Sensitization of Monolayer Transparent TiO2 Thin Films with Porphyrin Dyes for DSSC Applications

    Get PDF
    Free base, Cu(II) and Zn(II) complexes of the 2,7,12,17-tetrapropionic acid of 3,8,13,18-tetramethyl-21H,23H porphyrin (CPI) in solution and bounded to transparent monolayer TiO2nanoparticle films were studied to determine their adsorption on TiO2surface, to measure the adsorption kinetics and isotherms, and to use the results obtained to optimize the preparation of DSSC photovoltaic cells. Adsorption studies were carried out on monolayer transparent TiO2films of a known thickness. Langmuir and Frendlich adsorption constants of CPI-dyes on TiO2monolayer surface have been calculated as a function of the equilibrium concentrations in the solutions. The amount of these adsorbed dyes showed the accordance with Langmuir isotherm. Kinetic data on the adsorption of dyes showed significantly better fits to pseudo-first-order model and the evaluated rate constants linearly increased with the grow of initial dye concentrations. The stoichiometry of the adsorption of CPI-dyes into TiO2and the influence of presence of coadsorbent (chenodeoxycholic acid) have been established. The DSSC obtained in the similar conditions showed that the best efficiency can be obtained in the absence of coadsorbent with short and established immersion times

    Oxygen transfer in a gas-liquid system : kinetic influence of water salinity

    Get PDF
    Oxygen gas is widely used as oxidant in a variety of industrial processes, such as hydrometallurgy, biochemical industry, organic syntheses, and wastewater treatment [1]. However, the gas–liquid mass transfer of oxygen usually becomes a bottleneck of the whole process due to its sparing solubility in aqueous solutions. It is therefore a research subject to enhance oxygen mass transfer. This study is dedicated to an accurate evaluation of thermodynamic and kinetics aspects in the water oxygenation process. Oxygenation can be analyzed by means of kinetic study of oxygen dissolution from the oxygen mass transfer coefficient (KLa) and oxygen transfer rate (SOTR) [2]. A stirred, submerged aerated 4-liters system have been designed and the operational conditions has been optimized by studying the influence of hydraulic head, air flow and salinity of water using an optical oxygen sensor. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained from different binary systems (water/air) and ternary systems (water/air/salts). This information is necessary to predict the composition of the gas phase during the process and it is also important for an implementation in a process simulation. The oxygen mass transfer coefficients were firstly measured, monitoring in the time the oxygen concentration in various synthetic liquid phases containing either salts (NaCl, KCl, LiCl and MgCl). When compared to clean water, noticeable increase of KLa were observed; the variation of KLa and SOTR with the solution salinity was modelled and found dependent on the nature of cation in the salt added. For all cases, an increase of KLa with salinity increasing was observed. The present study clearly confirmed the importance to define the experimental conditions before to describe and to model appropriately the gas–liquid mass transfer phenomena

    Recent Advances in Graphene Based TiO2 Nanocomposites (GTiO2Ns) for Photocatalytic Degradation of Synthetic Dyes

    Get PDF
    Synthetic dyes are widely used in textile, paper, food, cosmetic, and pharmaceutical industries. During industrial processes, some of these dyes are released into the wastewater and their successive release into rivers and lakes produces serious environmental problems. TiO2 is one of the most widely studied and used photocatalysts for environmental remediation. However, it is mainly active under UV-light irradiation due to its band gap of 3.2 eV, while it shows low efficiency under the visible light spectrum. Regarding the exploration of TiO2 activation in the visible light region of the total solar spectrum, the incorporation of carbon nanomaterials, such as graphene, in order to form carbon-TiO2 composites is a promising area. Graphene, in fact, has a large surface area which makes it a good adsorbent for organic pollutants removal through the combination of electrostatic attraction and π-π interaction. Furthermore, it has a high electron mobility and therefore it reduces the electron-hole pair recombination, improving the photocatalytic activity of the semiconductor. In recent years, there was an increasing interest in the preparation of graphene-based TiO2 photocatalysts. The present short review describes the recent advances in TiO2 photocatalyst coupling with graphene materials with the aim of extending the light absorption of TiO2 from UV wavelengths into the visible region, focusing on recent progress in the design and applications in the photocatalytic degradation of synthetic dyes

    Kinetic Model for Simultaneous Adsorption/Photodegradation Process of Alizarin Red S in Water Solution by Nano-TiO2 under Visible Light.

    Get PDF
    The simultaneous adsorption and visible light photodegradation of Alizarin Red S in water solutions were studied in real time mode by using nano-TiO2, such as Anatase and Aeroxide P-25, supported on polypropylene strips. Kinetic results of the overall process were compared with those obtained from separated steps of adsorption and photodegradation previously studied; kinetic advantages were evidenced with the simultaneous approach. From the study of different dye concentrations, a kinetic model has been proposed which describes the overall process. This model considered two consecutive processes: The adsorption of dye on TiO2 surface and its photodegradation. The obtained results were in good agreement with experimental data and can predict the profiles of free dye, dye adsorbed on TiO2 and photoproduct concentrations during the total process

    Optimization of Photocathode for Tandem-Dye Solar Cell

    Get PDF
    Tandem dye sensitized solar cells(DSSCs) is a modification of n-type DSSCs, and could be a new device for increasing the efficiency of solar cells by converting more of the solar spectrum than can be obtained by one photoelectrode alone. The solar device is composed by two electrodes which are sensitized with two different and complimentary dyes that collect lower energy photons on one electrode and higher energy photons on the other [1]. NiO oxide is used as p-type semiconductor, and the sensitizers is anchoring on it; under irradiation, the sensitizer is excited and decays by hole injection into the VB of the NiO, forming a charge separated state. A redox couple, in most cases an iodine/triiodide couple, reacts with the charge sensitizer to regenerate the fundamental state and transports the electron to the counter electrode. The Open-Circuit Photovoltage(Voc) is the difference between the potential of the redox couple and the NiO Fermi Level. The efficiency of tandem solar cells is limited by the p-type photocathode and the higher efficiency reached until now is 1.3% [2]. The most restriction in this case is the recombination process between the hole in the NiO to reduced dye, that limits photocurrent, and the recombination to electrolyte. So, in order to have an efficient device, the dye regeneration and the charge injection into NiO must be able to compete with recombination. In this research we test new sensitizers: one based on boron-dipyrromethene and a cationic acceptor dye for application in tandem DSSCs [3]; in particular we focused the attention on the optimization of the NiO p-DSSC. We also study the influence of co-adsorbents in order to limit the aggregation and the recombination process

    Kinetic Model for Photocatalytic Degradation of Alizarin Red-S by Polypropylene coated nano-TiO2

    Get PDF
    The aim of this study is optimize and clarify the total mechanism of adsorption/ visible-photodegradation of Alizarin Red S polypropylene coated nano-TiO2 Degussa P-25 and TiO2 Anatase as photocatalysts. The characterization of Alizarin Red S and its chemical interaction with TiO2 surface has been studied. The acid dissociation constants of Alizarin Red S are determined. Adsorption and photodegradation steps were simultaneously studied in order to propose a simple kinetic model which can describe the process in an adequate way. The results obtained from this kinetics model are in good agreement with experimental data

    Optimizing the Heavy Metal Ion Sensing Properties of Functionalized Silver Nanoparticles: The Role of Surface Coating Density

    Get PDF
    We present a colorimetric sensor based on functionalized silver nanoparticles for the detection of metal ions in aqueous solutions. The interaction between the target metal ion and the functionalizing agent triggers the aggregation of these nanoparticles, and the consequent change in optical properties allows the detection/quantification of the analyte. In detail, this work describes the synthesis of AgNPs by a chemical reduction method, and the production of mercaptoundecanoic acid functionalized NPs with different surface densities (multi-, full-, and two partial layers). UV-Vis spectroscopy was used to monitor the functionalization processes, and to investigate the aggregation behavior of each AgNPs@11MUA sensor upon titration with the metal ions of interest, namely Ni2+, Zn2+, Co2+, Cd2+, Mn2+, and Cu2+. The resulting UV-Vis raw data obtained for each layer density were submitted to principal component analysis to dissect the role of the metal ions in NP aggregation and in establishing the sensitivity and selectivity of the AgNPs@11MUA sensor. Interestingly, we observed an increase in sensor sensitivity and selectivity at a lower density of the functionalizing agent on the AgNPs’ surface, which results in characteristic colors of the NP suspension upon titration with each metal ion

    The role of the microbiome in drug resistance in gastrointestinal cancers.

    Get PDF
    Introduction: The microbiota is recognized for its impact on both human health and disease. The human microbiota is made up of trillions of cells, including bacteria, viruses, and fungi. The largest population of microbes reside in the gut, prompting research for better understanding of the impact of gastrointestinal microbiota in different diseases. Evidence from numerous studies has pointed out the role of commensal microbes as key determinants of cancer pathogenesis. Moreover, gut microbiota may play an important role in chemoresistance; consequently, this knowledge might be important for novel strategies to improve anticancer treatment efficacy. Areas covered: We describe the role of microbiota in different gastrointestinal cancer types (esophageal, gastric, colorectal, hepatocellular and pancreatic-biliary tract cancers). Moreover, we analyzed the impact of the microbiota on resistance to anticancer therapies, and, lastly, we focused on possibilities of microbiota modulation to enhance anticancer therapy efficacy. Expert opinion: Increasing evidence shows that gut microbiota might influence resistance to anticancer treatment, including conventional chemotherapy, immunotherapy, radiotherapy, and surgery. Therefore, a better knowledge of gut microbiota and its interactions with anticancer drugs will enable us to develop novel anticancer treatment strategies and subsequently improve the cancer patients' outcome
    • …
    corecore