4 research outputs found

    Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets.

    Get PDF
    Abstract African swine fever (ASF) is a devastating disease for which there is no vaccine available. The ASF virus (ASFV) primarily infects cells of the myeloid lineage and this tropism is thought to be crucial for disease pathogenesis. A detailed in vitro characterization of the interactions of a virulent Sardinian isolate (22653/14) and a tissue culture adapted avirulent strain (BA71V) of ASFV with porcine monocytes, un-activated (moMΦ), classically (moM1) and alternatively (moM2) activated monocyte-derived macrophages was conducted in an attempt to better understand this relationship. Using a multiplicity-of-infection (MOI) of 1, both viruses were able to infect monocytes and macrophage subsets, but BA71V presented a reduced ability to infect moM1 compared to 22653/14, with higher expression of early compared to late proteins. Using an MOI of 0.01, only 22653/14 was able to replicate in all the macrophage subsets, with initially lowest in moM1 and moM2. No differences were observed in the expression of CD163 between ASFV infected and uninfected bystander cells. ASFV down-regulated CD16 expression but did not modulate MHC class II levels in monocytes and macrophage subsets. BA71V-infected but not 22653/14-infected moMΦ and moM2 presented with a reduced expression of MHC class I compared to the mock-infected controls. Higher levels of IL-18, IL1-β and IL-1α were released from moM1 after infection with BA71V compared to 22653/14 or mock-infected control. These results revealed differences between these ASFV strains, suggesting that virulent isolates have evolved mechanisms to counteract activated macrophages responses, promoting their survival, dissemination in the host and so ASF pathogenesis

    Peripheral blood and milk leukocytes subsets of lactating Sarda ewes

    No full text
    <p>Leukocytes subpopulations in blood and milk of lactating Sarda ewes were investigated. Animals characterized by a SSC level &lt;500×10<sup>3</sup>cells/mL and a negative bacteriological examination were sampled in early, mid and late lactation. Milk differential cell count evidenced that macrophage represented the main population (42.8%±3.5) followed by lymphocytes (40.2%±3.4) and neutrophils (8,6%±2.1). Flow cytometry analysis showed that lymphocytes subsets in milk were quite different from blood. High CD8<sup>+</sup> and low CD4<sup>+</sup> lymphocytes percentages determined a CD4/CD8 ratio inversion in milk compared to blood (0.3%±0.03 <em>vs </em>1.8%±0.08). CD8<sup>+</sup> decreased while, conversely, CD4<sup>+ </sup>increased in late lactation. γδ T cells were more represented in milk (12.6%±1.3)<sup> </sup>than in blood (6.8%±0.3)<sup> </sup>and their proportions appeared similar throughout lactation in both compartments. IL-2 receptor was mainly expressed in milk on T cytotoxic lymphocytes. Data obtained in uninfected mammary glands could allow an early discrimination between physiological and pathological changes occurring in ewe milk. Further phenotypical and functional studies on milk leukocytes subsets might help to understand defense mechanisms of the ovine mammary gland against IMI.</p

    Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets

    Get PDF
    African swine fever (ASF) is a devastating disease for which there is no vaccine available. The ASF virus (ASFV) primarily infects cells of the myeloid lineage and this tropism is thought to be crucial for disease pathogenesis. A detailed in vitro characterization of the interactions of a virulent Sardinian isolate (22653/14) and a tissue culture adapted avirulent strain (BA71V) of ASFV with porcine monocytes, un-activated (moMΦ), classically (moM1) and alternatively (moM2) activated monocyte-derived macrophages was conducted in an attempt to better understand this relationship. Using a multiplicity-of-infection (MOI) of 1, both viruses were able to infect monocytes and macrophage subsets, but BA71V presented a reduced ability to infect moM1 compared to 22653/14, with higher expression of early compared to late proteins. Using an MOI of 0.01, only 22653/14 was able to replicate in all the macrophage subsets, with initially lowest in moM1 and moM2⋅ No differences were observed in the expression of CD163 between ASFV infected and uninfected bystander cells. ASFV down-regulated CD16 expression but did not modulate MHC class II levels in monocytes and macrophage subsets. BA71V-infected but not 22653/14-infected moMΦ and moM2 presented with a reduced expression of MHC class I compared to the mock-infected controls. Higher levels of IL-18, IL1-β and IL-1α were released from moM1 after infection with BA71V compared to 22653/14 or mock-infected control. These results revealed differences between these ASFV strains, suggesting that virulent isolates have evolved mechanisms to counteract activated macrophages responses, promoting their survival, dissemination in the host and so ASF pathogenesis

    Comparative phenotypic and functional analyses of the effects of autologous plasma and recombinant human macrophage-colony stimulating factor (M-CSF) on porcine monocyte to macrophage differentiation

    Get PDF
    Porcine monocyte-derived macrophages (moMΦ) have been employed as a model cell in numerous studies of the porcine immune system. However, the lack of a standardized method for moMΦ differentiation hampers the comparison of results coming from the use of different laboratory protocols. In this study we compared the use of varying concentrations of autologous plasma (10, 20 and 30% v/v) or recombinant human macrophage-colony stimulating factor (hM-CSF; 50, 100, and 200 ng/ml) to differentiate porcine monocytes into macrophages. Changes in cell morphology and surface marker expression were assessed by confocal microscopy and flow cytometry. Macrophage differentiation was evaluated by analysing TNF-α response to LPS stimulation and determining cytokine secretion patterns under both basal conditions and after classical and alternative activation. The effects of the differentiation methods on metabolic activity and susceptibility to infection with the myelotropic African swine fever virus (ASFV) were also evaluated. Monocytes cultured using the different culture conditions tested augmented in dimension and cellular complexity, but increasing porcine plasma concentrations resulted in a dose dependent enhancement in granularity and a marked pleomorphism. As expected, CD163, MHC class II DR and CD203a expression were up-regulated in both hM-CSF (M-CSF-moMΦ) and autologous plasma cultured macrophages (AP-moMΦ), although a lower percentage of CD163+ cells were found following differentiation with high percentages of porcine plasma. We observed enhanced number of viable cells using high concentration of hM-CSF compared to porcine plasma, suggesting a proliferative effect. Irrespective of differentiation conditions, monocyte differentiation into macrophages resulted in an increased susceptibility to ASFV and yielded larger amounts of LPS-induced TNF-α. AP-moMΦ showed a higher basal release of IL-1RA compared to those cultured with hM-CSF and displayed a reduced ability to respond to classical activation, suggesting that the use of high percentages of porcine plasma led to the acquisition of a M2-like phenotype. We conclude that all the protocols tested in this study can be considered as suitable to produce porcine moMΦ, although the use of hM-CSF provides high responsiveness to M1 polarization. Since a higher phenotypic and functional inter-animal variability was observed in AP-moMΦ, we propose that the use of low concentration of hM-CSF should be adopted as the method of choice to provide a better reproducibility between experiments
    corecore