3 research outputs found

    On the crucial ventilatory setting adjustment from two- to one-lung ventilation

    Get PDF
    ► Tidal volumes calculated on the basis of two healthy lungs are twice as great in their impact when delivered to a single lung. ► A tidal volume that would be appropriate to two-lung ventilation should be avoided when changing into one-lung ventilation. ► During one-lung ventilation with tidal volume appropriately calculated for such condition, the use of 5cm H2O PEEP could be useful to maintain arterial oxygenation without inducing a possible inflammatory/remodeling response. Lung mechanics, histology, oxygenation and type-III procollagen (PCIII) mRNA were studied aiming to evaluate the need to readjust ventilatory pattern when going from two- to one-lung ventilation (OLV). Wistar rats were assigned to three groups: the left lung was not ventilated while the right lung received: (1) tidal volume (VT)=5ml/kg and positive end-expiratory pressure (PEEP)=2cm H2O (V5P2), (2) VT=10ml/kg and PEEP=2cm H2O (V10P2), and (3) VT=5ml/kg and PEEP=5cm H2O (V5P5). At 1-h ventilation, V5P2 showed hypoxemia, alveolar collapse and impaired lung function. Higher PEEP minimized these changes and prevented hypoxemia. Although high VT prevented hypoxemia and maintained a higher specific compliance than V5P2, a morphologically inhomogeneous parenchyma and higher PCIII expression resulted. In conclusion, the association of low VT and an adequate PEEP level could be useful to maintain arterial oxygenation without inducing a possible inflammatory/remodeling response

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    International audienceBackground: Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods: WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings: Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0–4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2–6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation: In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates. Funding: European Society of Intensive Care Medicine, European Respiratory Society
    corecore