61 research outputs found

    Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis

    Get PDF
    AbstractRhodamine 123 (RH-123) was used to monitor the membrane potential of mitochondria isolated from rat liver. Mitochondrial energization induces quenching of RH-123 fluorescence and the rate of fluorescence decay is proportional to the mitochondrial membrane potential. Exploiting the kinetics of RH-123 fluorescence quenching in the presence of succinate and ADP, when protons are both pumped out of the matrix driven by the respiratory chain complexes and allowed to diffuse back into the matrix through ATP synthase during ATP synthesis, we could obtain an overall quenching rate proportional to the steady-state membrane potential under state 3 condition. We measured the kinetics of fluorescence quenching by adding succinate and ADP in the absence and presence of oligomycin, which abolishes the ADP-driven potential decrease due to the back-flow of protons through the ATP synthase channel, F0. As expected, the initial rate of quenching was significantly increased in the presence of oligomycin, and conversely preincubation with subsaturating concentrations of the uncoupler carbonyl cyanide p-trifluoro-metoxyphenilhydrazone (FCCP) induced a decreased rate of quenching. N,N′-dicyclohexylcarbodiimide (DCCD) behaved similarly to oligomycin in increasing the rate of quenching. These findings indicate that RH-123 fluorescence quenching kinetics give reliable and sensitive evaluation of mitochondrial membrane potential, complementing steady-state fluorescence measurements, and provide a mean to study proton flow from the mitochondrial intermembrane space to the matrix through the F0 channel

    The role of diagnostic VATS in penetrating thoracic injuries

    Get PDF
    BACKGROUND: Penetrating chest injuries account for 1–13% of thoracic trauma hospital admissions and most of these are managed with a conservative approach. Nevertheless, 18–30% of cases managed only with tube thoracostomy have residual clotted blood, considered the major risk factor for the development of fibrothorax and empyema. In addition, 4–23% of chest injury patients present persistent pneumothorax and 15–59% present an injury to the diaphragm, which is missed in 30% of cases. In order to make a correct diagnosis, reduce the number of missed injuries, chronic sequelae and late mortality we propose performing surgical exploration of all patients with a penetrating injury of the pleural cavity. METHODS: 1270 patients who sustained thoracic trauma were admitted to our hospital between 1994 and 2004. Of these, 16 patients had penetrating injuries: thirteen were surgically explored by means of Video Assisted Thoracic Surgery (VATS), and 3 with thoracotomy due to hemodynamic instability or suspected lesion of the heart or great vessels. RESULTS: In the 13 patients who underwent VATS, 5 injuries to the diaphragm, 3 lesions to an intercostal artery, and 1 lesion to the diaphragmatic artery were detected. In 12 of these patients a laceration of the pulmonary parenchyma was also present. A conversion to thoracotomy was necessary due to a broad laceration of the diaphragm and due to hemostasis of an intercostal artery. In all but one case, which was later converted, diagnostic imaging missed the diagnosis of laceration of the diaphragm. There was no intra- or postoperative mortality, and average hospital stay was five days. CONCLUSION: VATS is a safe and effective way to diagnose and manage penetrating thoracic injuries, and its extensive use leads to a reduction in the number of missed, potentially fatal lesions as well as in chronic sequelae

    Massive right hemothorax as the source of hemorrhagic shock after laparoscopic cholecystectomy - case report of a rare intraoperative complication

    Get PDF
    A 62-year old man was referred to our institution in hemorrhagic shock after a laparoscopic cholecystectomy for acute cholecystitis, performed at an outside hospital. A chest X-ray revealed a right-sided massive pleural effusion. Urgent surgical exploration was performed through a video-assisted mini-thoracotomy which revealed active bleeding from a pleural adherence. Successful hemostasis was achieved intraoperatively and the patient had an uneventful recovery. In absence of intra-abdominal hemorrhage, a hemothorax should be considered as a potential source of major bleeding in patients who develop symptoms of hypovolemia after laparoscopic surgery

    Cystic fibrohistiocytic tumor of the lung presenting as a solitary lesion

    Get PDF
    Cystic fibrohistiocytic tumor of the lung is a rare neoplasm. In many cases it represents a metastasis from a benign or low-grade fibrohistiocytic tumor of the skin, but occasionally it may be primary. Radiologically it usually occurs as a cystic change of multiple pulmonary nodules, and pneumothorax is the most frequent presenting symptom. We present here a 16-year-old man with recurrent right pneumothorax. The patient had no history of cutaneous fibrohistiocytic lesions. He underwent videothoracoscopic right apical segmentectomy, right lower lobe nodulectomy, and pleuroabrasion. Microscopy of the apical segmentectomy showed a cystic fibrohistiocytic tumor, whereas the nodule of the lower lobe was an intraparenchymal lymph node. The patient is alive with no tumor recurrence. The differential diagnosis includes Langerhans cell histiocytosis, lymphangioleiomyomatosis, pleuropulmonary blastoma, and metastatic endometrial stromal sarcoma. This disease usually occurs with multiple pulmonary cysts and cavitation. This case is the first reported presenting as a single lesion

    The pro-oncogenic protein IF1 does not contribute to the Warburg effect and is not regulated by PKA in cancer cells

    Get PDF
    : The endogenous inhibitor of mitochondrial F1Fo-ATPase (ATP synthase), IF1, has been shown to exert pro-oncogenic actions, including reprogramming of cellular energy metabolism (Warburg effect). The latter action of IF1 has been reported to be hampered by its PKA-dependent phosphorylation, but both reprogramming of metabolism and PKA-dependent phosphorylation are intensely debated. To clarify these critical issues, we prepared stably IF1-silenced clones and compared their bioenergetics with that of the three parental IF1-expressing cancer cell lines. All functional parameters: respiration rate, ATP synthesis rate (OXPHOS), and mitochondrial membrane potential were similar in IF1-silenced and control cells, clearly indicating that IF1 cannot inhibit the ATP synthase in cancer cells when the enzyme works physiologically. Furthermore, all cell types exposed to PKA modulators and energized with NAD+-dependent substrates or succinate showed similar OXPHOS rate regardless of the presence or absence of IF1. Therefore, our results rule out that IF1 action is modulated by its PKA-dependent phosphorylated/dephosphorylated state. Notably, cells exposed to a negative PKA modulator and energized with NAD+-dependent substrates showed a significant decrease of the OXPHOS rate matching previously reported inactivation of complex I. Overall, this study definitively demonstrates that IF1 inhibits neither mitochondrial ATP synthase nor OXPHOS in normoxic cancer cells and does not contribute to the Warburg effect. Thus, currently the protection of cancer cells from severe hypoxia/anoxia and apoptosis remain the only unquestionable actions of IF1 as pro-oncogenic factor that may be exploited to develop therapeutic approaches

    The mitochondrial inhibitor IF1 binds to the ATP synthase OSCP subunit and protects cancer cells from apoptosis

    Get PDF
    : The mitochondrial protein IF1 binds to the catalytic domain of the ATP synthase and inhibits ATP hydrolysis in ischemic tissues. Moreover, IF1 is overexpressed in many tumors and has been shown to act as a pro-oncogenic protein, although its mechanism of action is still debated. Here, we show that ATP5IF1 gene disruption in HeLa cells decreases colony formation in soft agar and tumor mass development in xenografts, underlining the role of IF1 in cancer. Notably, the lack of IF1 does not affect proliferation or oligomycin-sensitive mitochondrial respiration, but it sensitizes the cells to the opening of the permeability transition pore (PTP). Immunoprecipitation and proximity ligation analysis show that IF1 binds to the ATP synthase OSCP subunit in HeLa cells under oxidative phosphorylation conditions. The IF1-OSCP interaction is confirmed by NMR spectroscopy analysis of the recombinant soluble proteins. Overall, our results suggest that the IF1-OSCP interaction protects cancer cells from PTP-dependent apoptosis under normoxic conditions

    Blang: Bayesian declarative modelling of general data structures and inference via algorithms based on distribution continua

    Get PDF
    Consider a Bayesian inference problem where a variable of interest does not take values in a Euclidean space. These "non-standard" data structures are in reality fairly common. They are frequently used in problems involving latent discrete factor models, networks, and domain specific problems such as sequence alignments and reconstructions, pedigrees, and phylogenies. In principle, Bayesian inference should be particularly well-suited in such scenarios, as the Bayesian paradigm provides a principled way to obtain confidence assessment for random variables of any type. However, much of the recent work on making Bayesian analysis more accessible and computationally efficient has focused on inference in Euclidean spaces. In this paper, we introduce Blang, a domain specific language and library aimed at bridging this gap. Blang allows users to perform Bayesian analysis on arbitrary data types while using a declarative syntax similar to BUGS. Blang is augmented with intuitive language additions to create data types of the user's choosing. To perform inference at scale on such arbitrary state spaces, Blang leverages recent advances in sequential Monte Carlo and non-reversible Markov chain Monte Carlo methods

    Cytosolic serine hydroxymethyltransferase controls lung adenocarcinoma cells migratory ability by modulating AMP kinase activity

    Get PDF
    Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients
    • …
    corecore