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Abstract

Consider a Bayesian inference problem where a variable of interest does not take
values in a Euclidean space. These “non-standard” data structures are in reality fairly
common. They are frequently used in problems involving latent discrete factor models,
networks, and domain specific problems such as sequence alignments and reconstructions,
pedigrees, and phylogenies. In principle, Bayesian inference should be particularly well-
suited in such scenarios, as the Bayesian paradigm provides a principled way to obtain
confidence assessment for random variables of any type. However, much of the recent work
on making Bayesian analysis more accessible and computationally efficient has focused on
inference in Euclidean spaces.

In this paper, we introduce Blang, a domain specific language and library aimed at
bridging this gap. Blang allows users to perform Bayesian analysis on arbitrary data types
while using a declarative syntax similar to the popular family of probabilistic programming
languages, BUGS. Blang is augmented with intuitive language additions to create data
types of the user’s choosing. To perform inference at scale on such arbitrary state spaces,
Blang leverages recent advances in sequential Monte Carlo and non-reversible Markov
chain Monte Carlo methods.
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1. Introduction

Blang is a probabilistic programming language (PPL) and software development kit (SDK) for
performing Bayesian data analysis. Its design supports scalable inference over arbitrary data
types, in particular, combinatorial spaces which are of central importance in areas such as
computational biology. The design philosophy is centered around the day-to-day requirements
of real-world data science. In the following, we put Blang in the context of the rich PPL and
Bayesian modeling ecosystem.
Probabilistic programming has revolutionized applied Bayesian statistics in the past two
decades; now being a part of the core toolbox of applied statistics. For example, pack-
ages such as BUGS (Lunn et al. 2000, 2009, 2012), JAGS (Plummer 2003), Stan (Carpenter
et al. 2017), and PyMC3 (Salvatier, Wiecki, and Fonnesbeck 2016) have been widely used in
various applications ranging from ecology (Semmens, Ward, Moore, and Darimont 2009), to
astronomy (Greiner, Burgess, Savchenko, and Yu 2016), and psychology (Bürkner and Vuorre
2019). See Van de Meent, Paige, Yang, and Wood (2018) for a recent survey.
In recent years, research in the area of Bayesian modeling software has focused on two main
directions. On one hand, considerable progress has been made in designing general-purpose
PPLs (Wood, Van de Meent, and Mansinghka 2014; Paige and Wood 2014; Milch, Marthi,
Russell, Sontag, Ong, and Kolobov 2005; Goodman, Mansinghka, Roy, Bonawitz, and Tenen-
baum 2008) which are able to represent any computable probability distributions (Ackerman,
Freer, and Roy 2017). However, inference in these powerful languages often has to resort
to algorithms such as non-Markovian sequential Monte Carlo that can have poor scalabil-
ity. Rapid progress is being made to lift this limitation (e.g., Paige and Wood 2016; Zhou,
Gram-Hansen, Kohn, Rainforth, Yang, and Wood 2019; Ronquist et al. 2020) but in typical
applications that involve challenging combinatorial spaces, general purpose PPL inference
engines are not yet able to match the performance of specialized samplers. A second area
of active development (Carpenter et al. 2017; Salvatier et al. 2016; Bingham et al. 2018, in-
ter alia) has been to use automatic differentiation combined with Hamiltonian Monte Carlo
(HMC) sampling (Duane, Kennedy, Pendleton, and Roweth 1987; Neal 2011), which is highly
efficient in problems defined on continuous state spaces. Naturally, algorithms based on HMC
are not necessarily well-suited for inference problems defined on discrete and combinatorial
state spaces.
In the past, efficient sampling in combinatorial spaces has been achieved by designing portfo-
lios of specialized samplers in a case-by-case basis (see, e.g., Lakner, Van der Mark, Huelsen-
beck, Larget, and Ronquist 2008). This process is typically time consuming and error prone.
There is an opportunity to simplify this process, minimize manual intervention of tuning al-
gorithms, and to speed-up and parallelize inference. This is possible with new developments
in computational statistics such as non-reversible Markov chain Monte Carlo (MCMC) meth-
ods (Syed, Bouchard-Côté, Deligiannidis, and Doucet 2019) based on parallel tempering (TP;
Geyer 1991), and a non-standard flavor of the sequential Monte Carlo (SMC) method that we
call sequential change of measure (SCM, to avoid confusion with state-space SMC; Del Moral,
Doucet, and Jasra 2006; Neal 2001) augmented with adaptive schemes (Zhou, Johansen, and
Aston 2016). All these schemes are based on a continuum of probability distributions, all
defined on the same space and interpolating between the prior and posterior. The benefit of
these methods is that a simplistic set of sampling algorithms can still achieve high sampling
efficiency while exploiting parallel architectures. Blang fully automates the construction of in-



Journal of Statistical Software 3

terpolating probability distributions and therefore democratizes the use of high-performance
Monte Carlo schemes such as non-reversible PT and SCM.
Blang is designed to be efficient not only in computational terms but also for the user’s devel-
opment time. To achieve this goal, considerable effort has been put to facilitate model con-
struction, testing, reuse and integration into existing data analysis pipelines, and to support
reproducible data analysis. Instead of creating a language from scratch, Blang is built using
Xtext (Efftinge and Völter 2006), a powerful framework for designing programming languages.
Owing to this infrastructure, Blang incorporates a feature set comparable to many modern,
fully-fledged, multi-paradigm languages: functional, generic and object programming, static
typing, just-in-time compilation, garbage collection, IDE support for static types, profiling,
code coverage, and debugging.
Blang comes with a growing library of built-in models, which are themselves written in Blang
(as done in Murray and Schön 2018), moreover, users can share and maintain models via an
established transitive dependency management and versioning system. Blang also implements
a suite of existing and novel testing strategies for models and MCMC methods, blending them
with unit testing and multiple testing tools.
One of the existing PPLs most closely related to Blang is RevBayes (Höhna, Heath, Boussau,
Landis, Ronquist, and Huelsenbeck 2014; Höhna et al. 2016). RevBayes is a declarative
PPL which provides extensive support for Bayesian inference over phylogenetic trees, an
archetypical example of a challenging combinatorial space. Moreover, RevBayes supports
interactive usage, a functionality currently not supported in Blang. However, as phylogenetic
inference is the primary domain targeted by RevBayes, users interested in combinatorial spaces
other than phylogenetic trees will benefit from Blang’s abstractions which target arbitrary
combinatorial spaces.
The goal of this paper is to provide readers with an introduction to Blang. We begin with an
outline of the language’s goals in Section 2, describe the open source license used in Section 3,
and provide a first tutorial in Section 4. This is followed by a conceptual overview in Section 5,
which itself is sandwiched by two examples of increasing complexity (Sections 4 and 6). With
the big picture laid out, Blang’s declarative syntax and structure are formalized and detailed
in Section 7. A cheatsheet highlighting the key ideas discussed in the preceding sections is
summarized in Section 8. The sections have been arranged in what the authors believe to
be a pedagogical format. However, readers may find it helpful to first skim the sections
consisting of examples (Sections 4, 6, and 8). The remaining sections are more advanced, but
are nonetheless helpful for drawing context and understanding the motivation behind Blang’s
design. Section 9 illustrates and discusses a key feature of Blang: the creation of custom
data structures and custom samplers. Section 10 introduces Blang’s software development kit
(SDK), which can be used to implement complex models and assist in testing the correctness
of implementations. Section 11 consists of design patterns. Finally, Section 12 describes
Blang’s architecture and inference algorithms as a whole.

2. Goals
Blang’s purpose is to provide Monte Carlo approximations of posterior distributions arising
in Bayesian inference problems. The design of the language and its software development kit
is guided by the following high-level goals:
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Correctness: Bayesian inference software is notoriously difficult to implement. An example
from the tip of the iceberg is shown in Geweke (2004), which identifies software bugs and
erroneous results in earlier published studies. We address this issue using a marriage of
statistical theory and software engineering methodology, such as compositionality and
unit testing.

Ease of use: Blang uses a familiar BUGS-like syntax and it is designed to be integrated well
in modern data science workflows (input in tidy format, Wickham 2014, samples output
in tidy format).

Generality: As a programming language, Blang is Turing-complete and equipped with an
open type system, as well as facilities to quickly develop and test sampling algorithms
for new types. By an open type system, we mean that the set of types is not limited to
integers and real numbers, and can be arbitrary classes. Blang does not fully automate
the process of posterior sampling from user-defined types but instead greatly facilitates
the development, composition and sharing of custom sampling algorithms.

Computational scalability: The language is designed to ensure that state-of-the-art Monte
Carlo methods can be utilized. In particular, we made certain trade-offs to ensure
that a well-behaved continuum of distributions can be automatically created. This is
complemented with methods that extend existing PPL strategies to the combinatorial
space, for example a code scoping analysis to discover sparsity patterns with arbitrary
types, as well as built-in support for parallelization to arbitrary numbers of cores.

3. License, source, version and documentation availability
Blang is free and open source. The language and SDK are available under a permissive
BSD 2-Clause license. The relevant GitHub repositories are linked at https://github.
com/UBC-Stat-ML/blangDoc. Online documentation is available at https://www.stat.ubc.
ca/~bouchard/blang/, including Javadoc pages at https://www.stat.ubc.ca/~bouchard/
blang/Javadoc.html.

4. Tutorial
This section aims to introduce readers to Blang by presenting a minimal working example.
We begin with instructions for performing inference on a simple model using the command-
line interface (CLI). Realistic applications are demonstrated in Sections 6 and 9. Advanced
tutorials can be found in Appendix A.

4.1. Installing Blang’s command-line interface
We provide instructions here for installing and using Blang via the CLI. Alternative Blang
interfaces include an integrated development environment (IDE) as well as a Web interface,
both detailed in Section 10.1. Instructions are also available from the documentation website
(https://www.stat.ubc.ca/~bouchard/blang/) under the link Tools. Additionally, an R
(R Core Team 2022) and Python (van Rossum et al. 2011) interface to Blang are currently
under development.1

1The interfaces and associated instructions will be hosted on https://github.com/UBC-Stat-ML.

https://github.com/UBC-Stat-ML/blangDoc
https://github.com/UBC-Stat-ML/blangDoc
https://www.stat.ubc.ca/~bouchard/blang/
https://www.stat.ubc.ca/~bouchard/blang/
https://www.stat.ubc.ca/~bouchard/blang/Javadoc.html
https://www.stat.ubc.ca/~bouchard/blang/Javadoc.html
https://www.stat.ubc.ca/~bouchard/blang/
https://github.com/UBC-Stat-ML
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The prerequisites for the CLI installation process are:

1. A UNIX-compatible environment running bash or zsh. This includes, in particular,
Mac OS X, Linux, and Windows Subsystem for Linux.

2. The git command.

3. The Java Software Development Kit (SDK), version 11, 13, or 15. Other versions of
Java may be incompatible with the version of Xtext our software builds upon.2 The
Java runtime environment is necessary, and the runtime environment is not sufficient,
as compilation of models requires compilation into the Java Virtual Machine. Type
javac -version to test if the Java SDK is installed. If not, the Java SDK is freely
available at https://openjdk.java.net/.

4. Optionally, if automatic plotting of posterior distributions, trace plots, diagnostics, etc.
is required, R as well as the packages dplyr (Wickham, François, Henry, and Müller
2021) and ggplot2 (Wickham 2016) should be installed. In particular, the command
Rscript should be in the PATH variable for the optional plotting functionalities to work
correctly.

The following installation process is most thoroughly tested on Mac OS X and Linux, however
users have reported installing it successfully on certain Windows configurations (using either
Windows Subsystem for Linux or Cygwin).3

To install the CLI tools, input the following commands in a bash or zsh terminal interpreter:

$ git clone https://github.com/UBC-Stat-ML/blangSDK.git
$ cd blangSDK
$ source setup-cli.sh

The git clone command downloads the blangSDK repository, cd changes the current work-
ing directory, and source setup-cli.sh compiles and installs Blang (i.e., updates the PATH
variable). If the user moves the blangSDK folder, the command source setup-cli.sh needs
to be rerun.
You may now use Blang from any directory by typing blang (use lower case for the CLI
command as UNIX is case-sensitive).

4.2. Posterior inference

Consider the simplified Doomsday Argument (Carter and McCrea 1983) for modeling the
total number of humans that were ever or will ever be born. Denote the estimated number
of humans that have been born up to the present time as y, and the total number of humans
that were ever or will ever be born (an unknown variable) as z. The Doomsday Argument
posits y | z ∼ Uniform(0, z). With a prior belief of what values z can take on encoded as

2Specifically, OpenJDK 8, 11, 13, and 15 have been tested at the time of writing. Java is typically backward
compatible, but since the library Xtext performs bytecode manipulations it is more sensitive to versioning than
typical Java libraries. Managing and installing several versions of Java is greatly facilitated by the easy to
install package sdkman available at https://sdkman.io/.

3Note also that the Eclipse IDE plug-in does not require a UNIX-compatible environment, see Section 10.1.

https://openjdk.java.net/
https://sdkman.io/
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package toy

model Doomsday {
param RealVar rate
random RealVar y
random RealVar z
laws {

z | rate ~ Exponential (rate)
y | z ~ ContinuousUniform (0.0 , z)

}
}

Figure 1: Doomsday model programmed in Blang, Doomsday.bl.

an exponential distribution, we update our belief using a PPL to obtain an approximation of
the posterior distribution of z | y. Using a PPL for such a simple model is excessive but is
useful for demonstrating the basic mechanics of Bayesian inference in Blang. Figure 1 shows
the entire contents of the Blang file used to code the Doomsday model, Doomsday.bl.4

The first line is a package declaration, which identifies the package in which the Doomsday
model belongs to. The remaining code illustrates four Blang keywords.

• model: There should be exactly one model per file. The keyword should be followed by
an identifier, in this case Doomsday. Blang is a case-sensitive language and we use the
convention that model names are capitalized.

• random and param are used to declare model variables. By default, Blang approximates
the posterior distribution over the latent random variables conditioning on the observed
random variables.

• Variables need to specify their types. For example, random RealVar z is of type
RealVar and we give it the name z. As a convention, types are capitalized and variable
names are not.

• Briefly, random variables encompass all observed and unobserved random variables.
param variables encompass all known constants. The distinction is further discussed in
Section 5.

• Each model is required to have exactly one laws keyword followed by a code chunk
surrounded by curly braces, called the laws block. The purpose of the laws block is to
define joint distributions over the random variables. Here, we show one method to do
so, which is inspired by the BUGS notation and its derivatives. For example,
y | z ~ ContinuousUniform(0.0, z)

denotes the conditional distribution of y given z is equal to a uniform distribution
between 0 and z. In contrast to BUGS, we require specification of the random variables
that we are conditioning on, here | z.5

4See also https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/
example/jss/Doomsday.bl. Note that the package statements are different.

5There are several motivations behind this design choice deviating from BUGS. Technically, static analysis
could identify the list of variables we are conditioning on. However the notation used here is closer to a

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/Doomsday.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/Doomsday.bl
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From the project directory, type the following command, in which we specify that rate and
y are fixed to given values while z is unobserved:

$ blang --model toy.Doomsday --model.rate 1.0 --model.y 1.2 --model.z NA

The same model can be run via the Eclipse IDE (with the --model argument omitted),
following instructions from Section 10.1,6 or via a prepackaged repository of examples:

$ git clone https://github.com/UBC-Stat-ML/JSSBlangCode.git
$ cd JSSBlangCode/reproduction_material/example/
$ blang --model jss.Doomsday --model.rate 1.0 --model.y 1.2 --model.z NA

Compilation {
...

} [ ... ]
Preprocess {

...
} [ ... ]

Inference {
...

} [ ... ]
executionMilliseconds : 1037
outputFolder: ./JSSBlangCode/.../results/all/2019-06-27-14-13-21-RL.exec

Samples approximating the posterior distribution of z given the observation y are outputted
in tidy format (Wickham 2014) to samples/z.csv located in the directory specified by
outputFolder.
By default, posterior inference is done in two stages. The first stage, corresponding to the
Initialization block in the standard output, uses SCM which attempts to automatically
identify configurations of positive density. In the second stage, an adaptive non-reversible PT
algorithm is initialized from the output of the first stage and performs a series of adaptation
rounds, corresponding to the Round(1/9) through Round(9/9) blocks in the standard output.
PT algorithms are known to perform well even in the face of difficult sampling problems such
as those arising in multimodal distributions or weakly identifiable models. We describe the
inference algorithms and their configuration in detail in Section 12.1.

5. Conceptual overview
We now describe more formally the semantics of our language’s core construct: the model.
The basic notation introduced here will be useful to describe the syntax in full detail in the
next section.
mathematical notation used for example in the Bayesian non-parametric literature (e.g., Teh, Jordan, Beal,
and Blei 2006; Griffiths and Ghahramani 2011). More importantly however, the explicit conditioning allows
us to generalize the notation to handle complex dependencies. This is demonstrated in Sections 11.1 and 11.2.

6Instructions hosted on Blang’s website will be continually updated, see https://www.stat.ubc.ca/
~bouchard/blang/.

https://www.stat.ubc.ca/~bouchard/blang/
https://www.stat.ubc.ca/~bouchard/blang/
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model Doomsday {

param RealVar rate
random RealVar y
random RealVar z

laws { ... }

}

θ = (rate)
x = (y, z)

{fθ} = {Doomsday(rate)}
Θ1 = T1 = T2 = RealVar

Figure 2: Blang syntax (left) and corresponding mathematical notation (right).

5.1. Models
A Blang model encodes a set of densities {fθ(x) : θ ∈ Θ, x ∈ T}, and hence the distribution
of a random object X : Ω → T . We use the term density in a generalized sense, encom-
passing discrete, continuous, and mixed models, by allowing it to be defined with respect to
customizable reference measures.
We assume x = (x1, x2, . . . , xn) where n < ∞ is fixed. Despite n being finite in this formalism,
each xi is permitted to be of random or infinite dimensionality. The type or space, in which
the xi’s lie, is denoted by Ti. Hence xi ∈ Ti and x ∈ T = T1 × T2 × · · · × Tn. We also assume
each type Ti is implicitly associated with a default reference measure µi. These default choices
can be changed using the is keyword defined in Section 7.10. Once each reference measure
µi is given, by definition the densities are turned into distributions as follows:

Pθ(X ∈ A) =
∫

A
fθ(x)

n∏
i=1

µi( dxi), (1)

where A is some event, or more formally, an element of the σ-algebra of T . We also assume
a decomposition for the parameters θ = (θ1, θ2, . . . , θm) where m is fixed and each coordinate
θj has its type denoted by Θj . Hence, θj ∈ Θj and θ ∈ Θ = Θ1 × Θ2 × · · · × Θm. We use the
terminology model variables to refer to x and θ collectively.
To understand how these mathematical concepts translate into Blang syntax, let us relate
them via the Doomsday example from Section 4. The correspondence is shown in Figure 2.
The variables marked with the random keyword are concatenated to form x, while those
marked with the param keyword are concatenated to form θ.

5.2. Interpretation of laws blocks
The laws block is responsible for computing the point-wise evaluation of log(fθ(x)) for any
input x and θ. To do so, two methods are supported:

Composite laws use existing Blang models as building blocks to create a new one.

Atomic laws provide an arbitrary algorithm to compute the log density.

Both composite and atomic laws allow the user to express a known factorization of the density

fθ(x) =
K∏

k=1
f (k)(x, θ). (2)



Journal of Statistical Software 9

model ContinuousUniform {
random RealVar realization
param RealVar min
param RealVar max

laws {
logf(min , max) {

if (max - min <= 0.0) return NEGATIVE_INFINITY
return - log(max - min)

}
logf( realization , min , max) {

if (min <= realization && realization <= max) return 0.0
else return NEGATIVE_INFINITY

}
}
...

}

Figure 3: Continuous uniform distribution programmed in Blang, ContinuousUniform.bl.

Such a factorization can then be used as the basis of automating key aspects of state-of-the-
art Monte Carlo methods, such as the construction of a well-behaved continuum of auxiliary
distributions and the detection of sparsity patterns. Additionally this factorization enables
efficient sampling of latent variables, as only a fraction of factors will require evaluation per
variable.

5.3. Interpretation of atomic laws

In the case of an atomic law, for each k ∈ {1, 2, . . . ,K}, an expression or algorithm is provided
to compute the value of factor k in log scale, i.e., log

(
f (k)(x, θ)

)
.

For example, consider the continuous uniform distribution, which can be factorized as

funif
θ (x) = 1

θ2 − θ1︸ ︷︷ ︸
f (1)(x)

1[θ1 ≤ x ≤ θ2]︸ ︷︷ ︸
f (2)(x)

,

where θ = (θ1, θ2) = (min, max). Figure 3 shows the model defining a ContinuousUniform
distribution in ContinuousUniform.bl7 of the Blang SDK.

5.4. Interpretation of composite laws

In the case of a composite law, the decomposition in Equation 2 typically comes from an
application of the chain rule. In the Doomsday example, this is just:

fDooms
θ (x) = θ1 exp(−θ1x2)︸ ︷︷ ︸

f̃ (1)(x,θ)

1[0 ≤ x1 ≤ x2]
x2︸ ︷︷ ︸

f̃ (2)(x,θ)

. (3)

To understand composite laws, notice the factors in this decomposition can often be retrieved
from another existing model. In such a case, we say that a model, {f caller

θ (x) : x ∈ T, θ ∈
7See https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/

jss/others/ContinuousUniformExample.bl.

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/ContinuousUniformExample.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/ContinuousUniformExample.bl
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Θ}, calls another model, {f callee
θ′ (x′) : x′ ∈ T ′, θ′ ∈ Θ′}. This is illustrated in our running

example as the Doomsday model, the caller, calls the ContinuousUniform model, the callee.
Consequently this allows us to write the second factor in Equation 3 using the previously
defined ContinuousUniform model via

f̃ (2)(x, θ) = funif
t(x,θ)(s(x)),

for t(x, θ) and s(x) defined as follows.
First, t : T × Θ → Θ′ is a transformation from the caller model’s variables into the callee
model’s parameters, in this case t(x, θ) = (0, x2). The two entries in the list (0, x2) correspond
to the two param variables, min and max, in the definition of ContinuousUniform shown in
Section 5.3. We see that the order in which the param are declared is important when a model
is to be used in a composite fashion.
Second, s : T → T ′ is a selection of a subset i1, . . . , i|x′| of coordinates in x, so that s(x) =
(xi1 , . . . , xi|x′|). Hence, s selects which of the calling model’s random variables are used as the
callee model’s random variables. Here s(x) = (x1), where the single entry, (x1), corresponds
to the random variable, realization, in the definition of ContinuousUniform. Again, if more
than one random variable is selected, the order in which they are declared in the callee model
determines how they are matched.
Considering now the Blang statement:

y | z ~ ContinuousUniform(0.0, z)

we see that the left of the pipe symbol, |, encodes the selection s, and the expression in
parentheses encodes the transformation t.
In summary, the two lines in the laws block of the Doomsday model:

z | rate ~ Exponential(rate)
y | z ~ ContinuousUniform(0.0, z)

have the same interpretation as they would in probability theory. However, our notation can
also be extended to useful novel patterns (see Sections 11.1 and 11.2).

5.5. Model tree

Composite laws induce a directed tree over models, where a directed edge denotes a model
calling another model. We call this tree the model tree. The root of this tree is called the root
model.

5.6. Interpretation of generate blocks

In addition to the atomic and composite constructs available to specify a mandatory laws
block, Blang provides an optional orthogonal way to specify Pθ(X ∈ A), called a generate
block. The generate block performs forward simulation: it takes as input a random seed,
ω ∈ Ω, and returns X(ω) such that Equation 1 holds.
The generate block is technically redundant, but is crucial to check software correctness
by setting up statistical unit tests as described in Section 10.5. It is also used for various
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purposes during posterior inference, for example, by providing a form of regeneration in PT,
and to initialize SCM samplers.

5.7. Normal form

A laws block containing either only composite laws or only atomic laws is said to be in
normal form. For example, the laws block in Doomsday.bl is in normal form, as it consists
of composite and only composite laws. Similarly, the laws block in ContinuousUniform.bl
is also in normal form, as it consists of atomic and only atomic laws. As a counterexample,
the following laws block in a model is not in normal form:

z | rate ~ Exponential(rate)
logf(z) {

return -log(z)
}

as it contains both composite and atomic laws. Laws blocks in normal form are useful to
automatically construct sequences of annealed distributions, used in certain samplers used by
Blang’s runtime architecture (see Constructing a sequence of measures in Section 12.1).
A model is said to be in generative normal form if it satisfies the following conditions:

1. All models in the model tree are in normal form.

2. All models in the model tree based on atomic laws attached to unobserved variables are
equipped with a generate block.

Generative normal form is only required if the inference engine is PT or SCM, as samples
from the prior are exploited for initialization and/or regeneration.
We show in Section 11.1 how to rewrite a wide range of models into a generative normal form.
If a model cannot be written in generative normal form, the user may still apply standard
MCMC methods but not the more advanced PT and SCM schemes.

5.8. From Blang models to posterior inference

Any Blang model can be transformed into a posterior inference computer program. The
inputs of this computer program consist of variables in the root model. All param variables in
the root model become required inputs. In contrast, random variables in the root model can
either be specified or left missing as latent. The target posterior distribution is then defined
as the distribution of latent random variables given the variables that have been given an
input value.

6. Tutorial: A complete example
We illustrate an example of posterior inference for a Gaussian mixture model (GMM). We
highlight and briefly discuss key components in implementing a model, and showcase a series
of post-processed statistics and plots. After a formal introduction of the syntax (Section 7),
we will return to this example in the form of a summary in Section 8.
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package jss.gmm

model MixtureModel {

random List <RealVar > y
param Integer n ?: y.size
param Matrix a ?: fixedVector (1.0 , 1.0)
random List <IntVar > z ?: latentIntList (n)

param Integer K ?: 2
random Simplex pi ?: latentSimplex (K)
random List <RealVar > mu ?: latentRealList (K)
random List <RealVar > sd ?: latentRealList (K)

laws {

pi | a ~ Dirichlet (a)

for (int k : 0 ..< K) {
mu.get(k) ~ Normal (0.0 , 100.0)
sd.get(k) ~ ContinuousUniform (0.0 , 10.0)

}

for (int i : 0 ..< n) {
z.get(i) | pi ~ Categorical (pi)
y.get(i) | mu , sd , IntVar k = z.get(i)

~ Normal (mu.get(k), pow(sd.get(k), 2.0))
}

}
}

Figure 4: Finite Gaussian mixture model programmed in Blang, Mixturemodel.bl.

Consider the following model:

concentration α = [1, 1]
proportions π | α ∼ Dirichlet(α)

labels zi | π ∼ Categorical(π)
means µk ∼ Normal(0, 102)

standard deviations σk ∼ Uniform(0, 10)
observations yi | µ, σ, zi ∼ Normal(µzi , σ

2
zi

)

for i ∈ {1, 2, . . . , n} and k ∈ {1, 2}.
Figure 4 shows the Blang file MixtureModel.bl that encodes a GMM.8 We begin by declaring
variables as we did in the Doomsday model. In addition to declarations, we initialize them
to their respective latent types. Default initializations are expressed using ?: followed by
an expression in a syntax called XExpression described in detail in Section 7.11.9 Default
initializations can be overridden from the CLI (command line interface). We discuss this

8See https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/
jss/gmm/MixtureModel.bl. Complete and commented implementations in this section are available in the
reproduction materials located in the directory reproduction_materials/example.

9Those familiar with Java can think of XExpressions as “shorthand Java” for now.

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/gmm/MixtureModel.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/gmm/MixtureModel.bl
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mechanism in detail in Section 7.7. In this example, interpret initializations as creating
instances of latent objects.10 A list of data types available for latent variables can be found
in Figures 10 and 11.
In the next code block, the laws block, we declare the distribution of each latent variable. We
use for loops to encode a set of declarations. For example, the following two implementations
are equivalent:

for (int k : 0 ..< 2) {
mu.get(k) ~ Normal(0.0, 100.0)
sd.get(k) ~ ContinuousUniform(0.0, 10.0)

}

and

mu.get(0) ~ Normal(0.0, 100.0)
mu.get(1) ~ Normal(0.0, 100.0)
sd.get(0) ~ ContinuousUniform(0.0, 10.0)
sd.get(1) ~ ContinuousUniform(0.0, 10.0)

To perform posterior inference on MixtureModel based on observed yi’s, we invoke the fol-
lowing commands in the CLI:

$ git clone https://github.com/UBC-Stat-ML/JSSBlangCode.git
$ cd JSSBlangCode/reproduction_material/example
$ blang --model jss.gmm.MixtureModel \
> --model.y file data/obs1.txt \
> --engine PT \
> --engine.nChains 36 \
> --engine.nScans 30000 \
> --postProcessor DefaultPostProcessor

Preprocess {
...

} [ ... ]
Inference {

...
} [ ... ]

Postprocess {
Post-processing allLogDensities
Post-processing energy
Post-processing z
Post-processing logDensity
Post-processing mu
Post-processing nOutOfSupport
Post-processing pi

10In Section 9, we create a constructor for objects of type permutation. Its application is helpful in painting
a bigger picture on how these latent objects are used behind the scenes.
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Argument Description
--model.y file Specifies the file path to a newline-separated file with y’s values.
--engine PT Specifies parallel tempering as the inference algorithm.
--engine.nChains Controls the number of (annealed) parallel Markov chains.
--engine.nScans Controls the number of posterior samples to draw.
--postProcessor Specifies the post-processor.

Table 1: Summary of the key CLI arguments for the example.

Post-processing sd
MC diagnostics

} [ ... ]
executionMilliseconds : ...
outputFolder :./JSSBlangCode/.../all/2020-12-31-23-59-03-N0PvDjdc.exec

In this example, obs1.txt is a newline-separated file formatted as follows:
3.2

−0.3
1.7

...
More generally, information on the format used to input data can be obtained by appending
--help to the command line arguments (the command line help is contextual, so the informa-
tion given by appending --help to the model and inference engine specific arguments will be
more detailed than only using blang --help). A more sophisticated method to input data,
based on the plate notation, is discussed in Section 10.4. We briefly summarize the key CLI
arguments for the example in Table 1.
The details of how the --engine arguments influence the performance of inference are dis-
cussed in Section 12.
All experiment outputs are stored in a results directory, within the working directory
in which the Blang CLI command is called. Generally, there are three categories of out-
puts: samples (raw output), post-processed statistics/plots (summaries of the samples),
and monitoring statistics/plots (to assess the quality of the posterior approximation). Op-
tions for post-processing are handled via the --postProccesor runtime argument, accepting
DefaultPostProcessor or NoPostProcessor as arguments. Again use --postProccesor
DefaultPostProcessor --help for more information.
Currently, the DefaultPostProcessor option produces trace and density plots,11 and pro-
vides summary statistics including highest density credible intervals (HDIs, constructed us-
ing the method described in Chen and Shao 1999) and effective sample size (ESS) estimates
(based on a numerically robust version of the

√
n-size batch estimator described in Flegal

and Jones 2010). Type information is used to select appropriate plotting strategies (e.g.,
probability mass functions for IntVar types, density estimates for RealVar). Examples of
summary statistics for MixtureModel’s parameters are shown in Table 2, and can be found
under the directory summaries in results/latest.12 Notice the posterior summaries are

11The DefaultPostProcessor requires R as well as the packages dplyr and ggplot2.
12Numerical values are truncated to fit in the page width.
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index parameter mean sd min median max HDI.lower HDI.upper
0 mean 0.53 1.75 −19.87 0.96 23.03 −1.38 2.30
1 mean 0.57 1.76 −21.58 1.37 22.48 −1.36 2.34
0 sd 0.92 0.58 0.02 0.85 10.00 0.35 1.34
1 sd 0.92 0.62 0.06 0.85 9.82 0.35 1.32
0 pi 0.50 0.24 0.00 0.49 1.00 0.18 0.82
1 pi 0.50 0.24 0.00 0.51 1.00 0.18 0.82

Table 2: Summary statistics for the MixtureModel’s parameters.
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Figure 5: Posterior density plots for a subset of random variables in the GMM. The facets
(rows) are indexed by the mixture components. Left: standard deviation parameters. Right:
mixture proportion parameters. The two pairs of nearly-identical plots are indicative of
successful label switching, showing that the multimodal posterior distribution is well approx-
imated. By default, the 90% highest density interval is underlined in red.

nearly identical for the two mixture components. Similarly, the marginal posterior plots in
Figure 5 also exhibit this symmetry. This symmetry is to be expected in this example: it
arises from the unidentifiability of the GMM parameters known as label switching (Jasra,
Holmes, and Stephens 2005). Here the inference engine used, an adaptive non-reversible par-
allel tempering algorithm (abbreviated PT), is capable of capturing this symmetry despite
the high-dimensional multimodality involved (the zi’s of all variables have to be flipped to
switch modes).
Another statistic that is often of interest is the normalization constant (also known as model
evidence, or marginal likelihood). The logarithm of this value is automatically output in
logNormalizationEstimate.csv. The various methodologies available to estimate the log
normalization constant are discussed in Section 12.4. Figure 7 illustrates the progression of
estimates across PT adaptation rounds.
Output files for diagnosing and monitoring the performance of inference algorithms are also
produced. We will describe them in Section 12.1.
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Figure 6: Left: Trace plot for cluster-specific location parameters. The two clusters are
shown as facets. Right: log densities for two of the 36 tempered chains used in PT. The
x-axis has been clipped in the plot on the right but it is identical to the x-axis of the plot
on the left. Notice that the “jumps” between modes are densely distributed along the traces,
i.e., they occur very frequently in this example. Other diagnostics produced will be discussed
in Section 12.1.

7. A complete tour of Blang’s syntax
In this section we provide a more systematic survey of the Blang language. The formal defini-
tion of the language can be accessed in the blangDSL repository at https://github.com/UBC-
Stat-ML/blangDSL.

7.1. Project organization

Blang projects are composed of three types of files: Blang files (.bl), Xtend (Xtend 2019) files
(.xtend), and Java files (.java). This section is devoted to the syntax of Blang files. Xtend
and Java files are used to create supporting code for non-standard data types, samplers, and
user-defined functions. The user can choose either Xtend or Java for creating supporting code.
For users not familiar with Java, we recommend using Xtend because its syntax is consistent
with Blang’s syntax. This is a consequence of both languages being constructed with the
Xtext language development framework.

7.2. Interoperability with Java

Blang, Xtend and Java are seamlessly interoperable as the first two are transpiled into Java.
More precisely, any Java type can be imported and used in Blang, and any model defined in
Blang can be imported and used in Java with no extra work needed.
As such, types in Blang are equivalent to Java types, a terminology that encompasses Java
classes, interfaces, primitives, enumerations and annotation interfaces. At a high level, a type

https://github.com/UBC-Stat-ML/blangDSL/blob/master/ca.ubc.stat.blang.parent/ca.ubc.stat.blang/src/ca/ubc/stat/blang/BlangDsl.xtext
https://github.com/UBC-Stat-ML/blangDSL/blob/master/ca.ubc.stat.blang.parent/ca.ubc.stat.blang/src/ca/ubc/stat/blang/BlangDsl.xtext
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Figure 7: Log normalization constant estimates across adaptation rounds when the PT algo-
rithm is used. The fact that these estimates plateaued supports that the allocated computa-
tional budget is sufficient for this inference task.

can be thought of as a group of objects (chunks of computer memory) that satisfy a certain
set of properties (for example, they all support being passed in a certain function). We do
not assume prior knowledge of the Java language, in fact, Blang and Xtend syntax is often
simpler compared to Java’s.

7.3. Comments

Single line comments use the syntax

// some comment spanning the rest of the line.

Multi-line comments use

/*
many commented lines
can go here
*/

7.4. Blang models: High-level syntax

A Blang file is organized as shown in Figure 8. We briefly describe each code block as follows:
package statements are responsible for defining the package in which a Blang model belongs
to. Import statements are responsible for importing classes, functions, and models from
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// package and import statements

model NameOfMyModel {

// variables declarations

laws {
// laws declaration

}

generate ( nameOfMyRandomObject ) {
// generate block

}
}

Figure 8: Code illustrating the structure of a Blang file, NameOfMyModel.bl.

other packages. The variables declarations block is responsible for declaring model variables,
i.e., observed (constant) variables, latent variables, unknown parameters, known (constant)
parameters. The laws block is used to declare the probability distribution associated with
each of the (random) model variables (see Section 7.8). The optional generate block is used
for forward sampling from the model (see Section 7.9). It will also be helpful to keep in
mind that XExpressions (to be introduced) are imperative, while laws blocks are declarative.
Declarative code blocks do not have a notion of order, in other words, permuting the order
of two statements will have no observable effect on the program.
In the remainder, if a string such as NameOfMyModel contains the substring “My”, or has an
integer as suffix, it refers to an identifier that should be tailored to the context of the model
being written.
Blang is case-sensitive. Identifiers (model names, variable names, etc.) should start with
a letter and only use letters, numbers, and underscores. Furthermore, as a convention we
encourage users to capitalize model names.

7.5. Packages and imports
The packages construct deals with the rare, but unavoidable, situation of wanting to use code
from two developers that used the same name for a Blang model. Package declarations will
disambiguate the two.
Packages in Blang work the same as in Java, and precede import statements. To declare a
Blang model as part of a hierarchical group of related code, place the following declaration at
the very beginning of the Blang file:

package myOrganization.myPackageName

This package declaration line is optional but recommended if you plan to share your code.
The dot in myOrganization.myPackageName denotes a hierarchical organization going from
broader to more specific from left to right. As a convention, package names are generally not
capitalized.
To use another Blang model called AnotherModel from a package named some.other.pack,
we can use import statements of the form:

import some.other.pack.AnotherModel
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after the package declaration line. The same syntax can be used to import Java or Xtend
classes, where import static is used to import a function, while a standalone import state-
ment is used for types.
Package declarations effectively enable users to refer to specific objects of a package explicitly
through import statements. In the example below we see why this would be useful. Suppose
our model requires two data types from package1 and package2, each of which contain an
identically named but different implementation of DupedType. In the unlikely event of having
to use two types with duplicated names within the same file, importing should be avoided (i.e.,
do neither import package1 nor import package2). Instead each instance of the type should
be prefixed with the package name within the code. For example, consider the following code
in MyModel.bl:

model MyModel{
random package1.DupedType var1
random package2.DupedType var2
...

}

In contrast, here is an example of what not to do:

import package1.DupedType
import package2.DupedType

model MyModel{
random DupedType var1
random DupedType var2
...

}

A related construct is the extension import mechanism, described in more detail in Sec-
tion 7.11.

7.6. Automatic imports in Blang files

Any Blang file automatically imports:13

• all the types in the following packages:
blang.core,
blang.distributions,
blang.io,
blang.types,
blang.mcmc,
java.util,
xlinear

• all the static functions in the following files:
xlinear.MatrixOperations,

13The relevant Javadocs can be found at https://www.stat.ubc.ca/~bouchard/blang/Javadoc.html.

https://www.stat.ubc.ca/~bouchard/blang/Javadoc.html
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bayonet.math.SpecialFunctions,
org.apache.commons.math3.util.CombinatoricsUtils,
blang.types.StaticUtils

• as static extensions all the static functions in the following files:
xlinear.MatrixExtensions,
blang.types.ExtensionUtils,
blang.distributions.Generators

7.7. Model variables

Model variables encompass all observed (fixed) variables, latent variables, unknown parame-
ters, and known (constant) parameters in a statistical model. Model variables are declared
using one of two methods, declared with no default initialization:

random Type1 name1
param Type2 name2

or with default initialization:

random Type3 name3 ?: XExpression1
param Type4 name4 ?: XExpression2

Observed and latent random variables are declared with random, while parameters are de-
clared with param (see Section 5.1). The initialization blocks, denoted by XExpression1 and
XExpression2, are imperative blocks of code used to provide default values in the absence of
CLI arguments. For example:

random Double abc ?: {
val x = 123.0
return exp(x)

}

The expressions in initialization blocks are constructed with so called XExpressions. XExpres-
sions are introduced in more detail in Section 7.11 and are used to construct several aspects
of Blang programs. For now, think about XExpressions as chunks of code (lists of statements
or expressions) capable of performing arbitrary computations (loops, conditionals, creating
temporary variables, calling other functions, etc.), and returning one value. The statements
or expressions in a block can be terminated by a newline or by a semicolon.
If the block contains only one expression, the brackets can be omitted:

random Double abc ?: exp(123.0)

Initialization blocks can use values of previously listed variables. If a CLI argument is pro-
vided, then the initialization block will be overridden by it.

7.8. Laws block

Laws blocks are used to declare the (conditional) probability distribution associated with
each random variable. Note that unlike common programming languages used today for data
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analyses such as Python and R, the laws block is declarative. In particular, the interpretation
of a model is invariant to the order in which the individual laws are declared in the code.

Composite laws
Described conceptually in Section 5.4, composite laws have the following syntax in Blang:

variableExpression1, variableExpression2, ...
| conditioning1, conditioning2, ...

~ MyDistributionName(argumentExpression1, argumentExpression2, ...)

For example:

y | mu, variance ~ Normal(mu + 123, variance)

where variableExpression1, conditioning1, conditioning2, argumentExpression1, and
argumentExpression2 correspond to y, mu, variance, mu + 123, and variance respectively.
MyDistributionName refers to another Blang model. Each element in argumentExpression1,
argumentExpression2, ... is matched from left to right in the same order as the param
variables are declared in the model MyDistributionName.
The list (argumentExpression1, argumentExpression2, ...) corresponds to the trans-
formation t : T ×Θ → Θ′ in the notation used in Section 5.4. This is implemented by allowing
each element in argumentExpression1, argumentExpression2, ... to be an XExpression
which is recomputed each time the value of the density fθ(x) is queried; the expressions
argumentExpression1, argumentExpression2, ... are compiled to lambda expressions.
Continuing with the example above, mu + 123 will be computed at every iteration of an
MCMC algorithm (when factors dependent on µ are required). In other probabilistic pro-
gramming languages, these expressions are often referred to as deterministic nodes/variables
(in RevBayes and BUGS for example).14

Each element in variableExpression1, variableExpression2, ... is matched from left
to right in the same order as the random variables are declared in model MyDistributionName.
To relate this to Section 5.4, the list variableExpression1, variableExpression2, ...
corresponds to the output of the selection function s : T → T ′. This is implemented by
allowing each variableExpression to be an XExpression which is executed only once, at
initialization time. Often this XExpression is only a variable name, but it could also be an
expression selecting an entry in a list or vector.
The conditioning block, conditioning1, conditioning2, ... is used to restrict what can
be accessed by the transformation t. This is called the scope of the transformation t. It is
useful to restrict the scope as much as possible since this restriction induces sparsity patterns
in the model. Sparsity is then exploited by our efficient inference algorithms.
Specification of the scope is implemented as follows. Each item within conditioning1,
conditioning2, ... can take one of two possible forms. First, it can be one of the variable
names declared via the keyword random or param. For example, this first method is used in
all conditionings of the Doomsday model (see Figure 2).
The second method to specify a conditioning is as follows:

14In contrast to these other languages, these deterministic nodes cannot be straightforwardly named and
traced at the moment. We are investigating ways to incorporate this feature in future releases.
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variableExpression1, variableExpression2, ...
| MyType myConditioningVariable = XExpression1, ...

MyDistributionName(argumentExpression1, argumentExpression2, ...)

where MyType is a type, myConditioningVariable is a local variable that exists only for
the declaration of variableExpression1, variableExpression2, ...’s law. The code in
XExpression1 has access to all model variables. For example:

y | RealVar mu = manyMus.get(0) ~ Normal(mu, 1)

The XExpression1 code is executed only once at initialization. We show in Section 11.2
an example of the typical use case for this initialization process, where in a model for a
Markov chain, this initialization is simply to select, in a list of random variables, the variable
corresponding to the previous time step.

Atomic laws

Informally, atomic laws are used to compute factors, and are the building blocks for composite
laws. Described conceptually in Section 5.3, atomic laws have the following syntax in Blang:

laws {
logf(expression1, expression2, ...) { XExpression }

}

For example, x ∼ Normal(µ, σ2) (realization ∼ Normal(mean, variance)) would have the
following encoding in Normal.bl:

laws {
logf(mean, variance, realization) {

if (variance < 0.0) return NEGATIVE_INFINITY
return (- 0.5 * log(2*PI)

- 0.5 * log(variance)
- 0.5 * pow(mean - realization, 2) / variance)

}
}

It is recommended to separate factors with as few arguments together as possible, as this will
help the runtime architecture determine dependencies and avoid redundant computation. For
example, the Normal.bl implementation is recommended to be factorized as:15

laws {
logf() {

- 0.5 * log(2*PI)
}
logf(variance) {

if (variance < 0.0) return NEGATIVE_INFINITY
15See https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/distributions/

Normal.bl.

https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/distributions/Normal.bl
https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/distributions/Normal.bl
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return - 0.5 * log(variance)
}
logf(mean, variance, realization) {

if (variance < 0.0) return NEGATIVE_INFINITY
return - 0.5 * pow(mean - realization, 2) / variance

}
}

Recall that in Section 5.3, each atomic law was denoted as log
(
f (k)(x, θ)

)
. Here the list

expression1, expression2, ... is used to restrict the scope of f (k), with the same moti-
vation and mechanism as for composite laws, described in the last section. Each item in the list
expression1, expression2, ... follows the same syntax as the items in conditioning1,
conditioning2, ... also described in the last section.
The XExpression is responsible for computing the numerical value of log

(
f (k)(x, θ)

)
, and as

such, should return a value of type Double. The XExpression is recomputed each time the
value of the density fθ(x) is queried.

Declarative loops

In practice, the factorization in Equation 2 may have a large number of factors. To assist the
user in declaring these factors, we provide a “declarative loop” construct:

for (MyIteratorType myIteratorName : XExpression) { ... }

This will repeat all the declarations inside ... be they atomic or composite. Loops can
be nested with the expected cross product behavior.
The XExpression should return an object of type java.lang.Iterable. Some important
loop idioms:

• Simple loop from 0 (inclusively) to 10 (exclusively):
for (Integer i : 0 ..< 10) { ... }

• Loops based on a Collection, which offer a wide choice of data structures via Java’s
SDK or Google’s Guava project.16

An example iterating over a power set:17

for (Set<Integer> s : (0 ..< 5).powerSet) { ... }

• Loops based on Xtend’s or Java’s utilities.18 An example iterating over the first four
even integers:
for (Integer i : (0 ..< 10).filter[it % 2 == 0]) { ... }
The keyword it is explained in Section 7.11.

16See https://docs.oracle.com/javase/tutorial/collections/ and https://github.com/google/
guava/wiki/CollectionUtilitiesExplained.

17This requires the import line import static extension com.google.common.collect.Sets.powerSet.
18Documentation for Xtend’s utilities is available at https://www.eclipse.org/xtend/documentation/203_

xtend_expressions.html and documentation for Java’s streams is available at https://docs.oracle.com/
javase/tutorial/collections/streams/.

https://docs.oracle.com/javase/tutorial/collections/
https://github.com/google/guava/wiki/CollectionUtilitiesExplained
https://github.com/google/guava/wiki/CollectionUtilitiesExplained
https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html
https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html
https://docs.oracle.com/javase/tutorial/collections/streams/
https://docs.oracle.com/javase/tutorial/collections/streams/
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• The Plate data structure supplied by the Blang SDK is described in more detail in
Section 10.4.

The current runtime infrastructure assumes that the XExpression specifying the range should
not be random, in particular, it should not change during sampling. As such it is only com-
puted at initialization. Therefore, declarative loops, which surround atomic and composite
laws, are different than the loops within XExpressions. Although Blang does not currently
have built-in data types for sampling of infinite dimensional objects, they can be handled by
creating dedicated types and/or using XExpression loops inside a logf block.

7.9. Generate block

The generate block is responsible for the forward generating mechanism of a model. This is
optional in that it is only required when more sophisticated inference algorithms are desired,
as discussed in Section 5.6. An important distinction from laws blocks is that generate blocks
are imperative. Furthermore, they are not referentially transparent as random variables will
be modified in-place. We formalize the syntax used to encode the generate block introduced
conceptually in Section 5.6:

generate(myRandomSeed) {
XExpression

}

The argument myRandomSeed is the name of an input object of type java.util.Random (the
type declaration for this input is skipped since this is the only possible type allowed). To
connect this syntax with its interpretation described in Section 5.6, the input argument can
be thought as an outcome ω ∈ Ω, from which the XExpression should form the realization
X(ω).
If the model has exactly one random variable of type IntVar or RealVar, then the generate
block should return an int or double respectively, corresponding to the new realization.
Otherwise, the generate block should modify the random variable(s) in-place. The special
case for univariate IntVar and RealVar is just syntactic sugar: under the hood, generated
code uses the returned realization to modify the single variable to be sampled in-place.

7.10. Latent random variables and their reference measures

Each type of random variable which we would like to be latent is required to declare one or
more sampling algorithms. This is achieved by adding the following type annotation in the
Xtend or Java class for that data type:

@Samplers(MySampler1, MySampler2, ...)
class MyDataType {

...
}

Here each item in the list MySampler1, MySampler2, ... should be subtypes of the interface
Sampler.19

19https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/mcmc/Sampler.html

https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/mcmc/Sampler.html
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...

model Dirichlet {
random Simplex realization
param Matrix concentrations

laws {
logf( concentrations , realization ) {

...
}
realization is Constrained

}

generate (rand) {
...

}
}

Figure 9: Dirichlet distribution programmed in Blang, Dirichlet.bl.

Implicitly, the samplers associate a default reference measure to the latent random variables.
In some models, it may be necessary to overwrite these default reference measures for a
particular random variable. In such cases, Blang provides a mechanism to change them by
adding in the laws block, a line of the following form:

laws {
...
myVariableName is Constrained

}

In the above, myVariableName refers to the random variable name for which the default
reference measure is to be changed, and Constrained can also be any class which implements
Factor.20 Effectively, the intended behavior is to disable samplers which would be inoperative
with the alternate choice of reference measure.
To illustrate this necessity, consider a K-dimensional Dirichlet distributed random variable
(i.e., p = (p1, p2, . . . , pK)). By default, Blang would automatically designate slice samplers for
each of the coordinates p1, p2, . . . , pK , as they are of type RealVar variables. However, because
of the simplex constraint requiring ∑K

i=1 pi = 1, this would lead to proposal rejections almost
surely. The keyword Constrained is used to prevent this automatic assignment of ineffective
or incorrect samplers.21 Thus for the Dirichlet distribution, we require the line realization
is Constrained to disable each coordinate’s default sampler, as seen in Figure 9.
Having disabled default samplers, the next logical step is to ensure the variable (of type
Simplex) has an appropriate sampler of its own. The reader is recommended to return to this
section after building familiarity with Sections 9 and 12.7, where the details of creating custom
samplers are discussed. A very high-level introduction to creating samplers is discussed here
only to highlight the role of the constraint mechanism (if and when required) within samplers.

20https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/Constrained.html, https:
//www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/Factor.html

21Technically this could be achieved by creating a simplex type that is constructed without referencing
a RealVar type, but this is cumbersome as it is natural to use standard matrix objects within a simplex
implementation.

https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/Constrained.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/Factor.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/Factor.html
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...
class SimplexSampler implements Sampler {

@SampledVariable DenseSimplex simplex
@ConnectedFactor List < LogScaleFactor > numericFactors
@ConnectedFactor Constrained constrained

override void execute ( Random rand) { ... }
...

}

Figure 10: Snippets of the simplex sampler programmed in Xtend, SimplexSampler.xtend.

Consider Blang’s implementation of a simplex sampler shown in Figure 10. The annotation
@SampledVariable informs Blang that the simplex field is the variable to be sampled in-place.
Here we focus on the line @ConnectedFactor Constrained constrained which signals that
it is appropriate to use this sampler, even in the presence of a constrained factor connected to
the sampled variable in the factor graph. In contrast, the default sampler for real variables,
RealSliceSampler, does not have @ConnectedFactor Constrained constrained stating
that it is not able to accommodate sampling of the variable when it is connected to such
factor. Again refer to Section 12.7 for a more detailed discussion.
The function execute samples simplex in-place, or in other words, mutates the variable as
an update. The implementation details of execute are not important for the discussion of
the constraint mechanism, and are thus hidden.
In short, to change a reference measure for a variable, a user should first disable the sampler for
a variable by declaring myVariableName is Constrained in the laws block of a Blang model.
Then create a sampler, and annotate a field of type Constrained with @ConnectedFactor to
signal that it can handle this type of constraint.
A more refined typology of constraints can be built by the user, simply by creating subtypes
of blang.core.Factor. Those used in the standard library might also be refined in future
releases.

7.11. XExpressions

Syntax for XExpressions is provided by the Xtext language engineering framework. XExpres-
sions are imperative expressions. Thus the logf, generate, and variable initialization blocks
for example are imperative, while laws blocks are declarative.
Here we highlight key aspects commonly used in Blang programs. We refer the reader to the
Xtext documentation for more information.22

XExpressions can be either a single instruction as in the argument of the following Exponential
composite law:

y | a, b, x ~ Exponential(exp(a * x + b))

or there can be several instructions nested in braces, with the last one providing the return
value, as in this equivalent version of the above code

22The documentation page can be found at https://www.eclipse.org/Xtext/documentation/.

https://www.eclipse.org/Xtext/documentation/
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y | a, b, x ~ Exponential({
val product = a * x
exp(product + b)

})

Types

We classify types into three main categories: primitives, object references, and array refer-
ences. The most common primitives are boolean, int, and double.23 Object references can
be thought of as an annotated address to a memory location, possibly null. Lastly, array
references are rarely used directly in Blang. Instead, arrays are typically encapsulated in more
convenient data structures.

Literals

Examples of expressions that create constants of type . . .

• boolean: true, false

• int: 42, 12000

• double: 1.0, 1.3e2, making sure to include the decimal suffix or to use scientific
notation.

• String literals: either via "A",
or '''This version allows "quotes inside" and more'''.

• type literals: MyType, which is equivalent to Java’s MyType.class.

• List: #[true,false] (note the hash symbol # is not a comment as in other languages,
it is used to construct lists, sets, and maps).

• Set: #{"A","C","G","T"}

• Map: #{"key1" -> 1, "key2" -> 2}

• Pair: "likelihood" -> 1.43 (this example returns type Pair<String, Double>; this
syntax can be used with arbitrary key and value types).

Declaring variables with XExpressions

Local variables have to be declared at their first occurrence. The main syntax variants to do
so are:

var int myModifiableInt = 17
var typeInferred = #[1,2,3]
val int myConstantInt = 17

23They have the same characteristics as in Java, see https://docs.oracle.com/javase/tutorial/java/
nutsandbolts/datatypes.html for technical details.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
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In the example, var encodes a variable that is mutable whereas val encodes a variable that is
immutable. The meaning of immutability is simple to understand in the case of a primitive,
but it should be interpreted carefully in the context of references. In the latter, it means that
the reference will always point to the same object in the heap, however the internal state of
that object might change over time.
In the above, typeInferred illustrates that the type can be inferred automatically, in this
example a List<Integer>.

Conditionals

Conditional expressions have the following form:

val String variable = if (condition) value1 else value2

Conditional expressions return values depending on a condition, where condition evaluates
to a boolean. When (condition) is true, value1 is returned, otherwise value2 is returned.
The shorthand notation without else

if (condition) value

or

if (condition) {
(value)

}

is equivalent to if (condition) value else null.

Scope

The scope of a variable is defined as the portion of code in which the variable can be accessed.
Scoping in Blang is similar to most languages where in order to find the scope of a variable
we identify the parent braces and determine the region of the code where the variable can be
accessed. For example, a local variable declared within the body of a for loop (the regions
between curly braces) cannot be accessed outside of the body. If one variable reference is in
the scope of several variables declared with the same name, then the innermost braces have
priority.
The only exception is the arguments of the atomic and composite laws. Recall our example
in Section 7.8 (repeated below),

variableExpression1, variableExpression2, ...
| conditioning1, conditioning2, ...

~ MyDistributionName(argumentExpression1, argumentExpression2, ...)

These laws require explicit declaration of the variables to include in the scope, where these
variables should be identified at the right of the | symbol. This design choice is primarily
motivated by its flexibility in handling complex dependencies, to be demonstrated in Sec-
tions 11.1 and 11.2.
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XExpression loops

In addition to allowing loops following the declarative loop syntax, loops within XExpressions
allow the number of iterations to be random as well as a few syntactic alternatives:

1. Basic, C-like for loops:
for (var IteratorType iteratorName = init; condition; update) {...}
An example of which would be
for (var int i = 0; i <= 10; i++) {...}.

2. While loops:
while (condition) {...}.

Function calls

Functions are called as one would expect: nameOfFunction(expression1, expression2)
where each element in expression1 and expression2 are XExpressions. These expressions
are evaluated prior to being passed into the function (i.e., a form of “eager/greedy evalua-
tion”), in order from left to right.
The only exceptions are composite laws, where the evaluation of an argument is delayed at
initialization and instead repeated each time the density is evaluated during sampling (i.e., a
form of “lazy evaluation”). To see why this is needed, consider a factor declaration of the form
y | x ~ Normal(2 * x, 1). Each time this factor is computed during inference, we would
like the mean parameter 2 * x to be recomputed. One way to think about lazy evaluation
in this context is that when the factor graph is created, 2 * x is converted into a lambda
expression which is computed each time we are computing the value of the normal factor.
In all cases, the actual function call only involves copying a constant size register making these
calls very cheap. For primitives, the value of the primitive is copied and therefore the original
primitive can never suffer side effects from the call. For object references, the memory address
in the reference is copied and hence the original reference cannot be changed, although the
object it points to might have its state changed by the function call.

User defined functions

To create supporting functions, the user can create a separate Xtend or Java file. In Xtend,
use the following template for the separate file, say in MyFunctions.xtend provided below:

package my.pack
class MyFunctions {

def static ReturnType myFunction(ArgumentType1 arg1, ArgumentType2 arg2) {
// some computation
return result

}
}

Back to the Blang file being developed, the user can then import the functions into the Blang
file using import static my.pack.MyFunctions.* allowing us to call myFunction(arg1,
arg2).
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Extensions

Extension methods provide a kind of lightweight trait, i.e., adding methods to existing classes
on demand.
Continuing the same example in the last section, this is done by adding an extension import
statement:

import static extension my.pack.MyFunctions.myFunction

Provided a variable, say myVar, of type ArgumentType1 (the type of the first input argument
to the function myFunction defined in the previous section), the user can then invoke the
function via myVar.myfunction(arg2).
As a concrete example of how this is used to create more readable code, consider a typical
generate snippet, showing here how a Yule Simon distributed variate can be generated as a
mixture

generate(rand) {
val w = rand.exponential(rho)
return rand.negativeBinomial(1.0, 1.0 - exp(-w))

}

This can be equivalently written, more explicitly, as

generate(rand) {
val w = Generators.exponential(rand, rho)
return Generators.negativeBinomial(rand, 1.0, 1.0 - exp(-w))

}

The underpinning of this code is that since Blang automatically imports all functions in
Generators as extension methods,24 which contain the function:

def static double exponential(Random random, double rate)

then we can call rand.exponential(...) on the variable rand of type java.util.Random.

Creating objects

An object of type MyClass is created by calling new MyClass(argument1, ...). This can
be shortened to new NameOfClass if there are no arguments. To find which argument(s) are
necessary, look for the constructor in MyClass, which uses the keyword new in Xtend and the
name MyClass(...) in Java.
In some libraries, for example in the package we use for linear algebra, xlinear, the call to
new is wrapped inside a static function. In this case, just call the function to instantiate the
object. For example, to create a new sparse matrix with 1 000 rows and 10 000 columns, use
sparse(1_000, 10_000) (automatically imported from xlinear.MatrixOperations).25

24https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/distributions/Generators.html
25https://www.stat.ubc.ca/~bouchard/blang/javadoc-xlinear/xlinear/MatrixOperations.html

https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/distributions/Generators.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-xlinear/xlinear/MatrixOperations.html
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Using objects

Classes have instance variables or fields, which are variables associated with objects, as well as
methods, which are functions associated with the object having access to the object’s instance
variables. Collectively, fields and methods are called features. Features are accessed using the
“dot” notation: myObject.myVariable and myObject.myMethod(...). When a method has
no argument, the call can be shortened to myObject.myMethod.
The ability to call a feature is subject to Java visibility constraints. In short, only public
features can be called from outside the file declaring a class.

Implicit variable it

The special variable it allows users to provide a default object for feature calls:26

val it = myObject
doSomething

This is merely a shorthand notation for:

myObject.doSomething

and is used in lambda expressions which we discuss next.

Lambda expressions

A lambda expression is a succinct way to write a function without having to give it a name.
This construction makes it easy to call functions which take functions as argument (e.g., to
apply a function to each item in a list). Since they are so useful, many syntactic shortcuts
are available.
The explicit syntax for lambda expressions is:

[Type1 argument1, Type2 argument2, ... | functionBody ]

For example, to capitalize words in a list, we can use the function map(myFunction) which
applies myFunction to every entry in the list. Here map() is the function that takes in another
function myFunction as an argument. More concretely, we have:

#["foo", "bar"].map([String s | s.toUpperCase])

When there is a single input argument in the lambda expression (i.e., in the above case String
s), you can skip declaring the argument, and instead the argument will be assigned to the
implicit variable it (described in the previous section). This allows us to write:

#["one", "two"].map([it.toUpperCase])

which further simplifies to:

#["one", "two"].map([toUpperCase])
26See https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html.

https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html
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Finally, when the last argument of a function (map() in this case) is a function, you can
simply put the lambda after the parentheses of the function call (map()). For example:

#["one", "two"].map()[toUpperCase]

which further simplifies to:

#["one", "two"].map[toUpperCase]

Boxing and unboxing

Boxing refers to wrapping a primitive such as int or double into an object such as Integer
or Double. Deboxing is the reverse process. The Integer or Double objects are immutable
data structures necessary as many data structures assume all their contents are references to
objects rather than primitives. As in Java, the conversion between the two representations is
automatic in the vast majority of the cases. Blang adds boxing/deboxing to and from IntVar
and RealVar,27 which are mutable versions of Integer or Double. See Appendix B.3 for a
discussion on why these mutable data structures are necessary in Blang.

Operator overloading

Operator overloading is permitted. When in the Blang IDE, command click on an operator
to reveal its definition. One important case to be aware of is == which is overloaded to
.equals(...). For the low-level equality operator that checks if the two sides are identical
(point to the same object or in the case of primitive, have the same value) use === (with the
exception of Double.NaN which, following IEEE convention, is never === to anything).
Some useful operators that are automatically imported:

• “0..10”, and “0..<11”: These expressions are range operators and return integers 0,
1, 2, . . . , 10.

• object => lambdaExpression: calls the lambda expression with the input given by
object e.g., new ArrayList => [add("to be added in list")].

When overloading operators of custom type refer to Xtend’s official documentation (Xtend
2019).

Parameterized types

Types can be parameterized as in Java’s List type. For example, we use List<String> to
declare that a string will be stored, just as we would in Java. At the moment, models can use
variables with type parameters but models themselves cannot have type parameters.

Throwing exceptions

Throw exceptions to signal abnormal behavior and to terminate the Blang runtime with an
informative message:

throw new MyException("Some error message.")
27https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/IntVar.html, https:

//www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/RealVar.html

https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/IntVar.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/RealVar.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/RealVar.html
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Here MyException should be of type java.lang.Throwable. A reasonable default choice
is java.lang.RuntimeException. To signal that the current factor has invalid parameters
return the value NEGATIVE_INFINITY. If not possible due to a particular code structure, one
can also return the value invalidParameter.28 This will be caught and interpreted as a
factor having zero probability. In contrast to Java, Blang exceptions are never required to be
declared or caught. If an exception needs to be caught, the syntax is as follows:

try {
// code that might throw an exception

} catch (ExceptionType exceptionName) {
// process exception

} // optionally:
finally {

// code executed whether the exception is thrown or not
}

8. Cheatsheet interlude
Learning a language can be a time-consuming task with new grammar and syntax to re-
member. Before continuing with more examples, ideas, and patterns, we present a condensed
summary of the concepts covered thus far in the form of a recipe. We will draw connections to
the GMM example from Section 6 where appropriate. For convenience, we repeat the model
below:

concentration α = [1, 1]
proportions π | α ∼ Dirichlet(α)

labels zi | π ∼ Categorical(π)
means µk ∼ Normal(0, 102)

standard deviations σk ∼ Uniform(0, 10)
observations yi | µ, σ, zi ∼ Normal(µzi , σ

2
zi

)

for i ∈ {1, 2, . . . , n} and k ∈ {1, 2}.

The cheatsheet

1. Write down your package statement.
Example:

package jss.gmm

2. If it is already known which packages you will work with, then import them. We did
not require additional packages for the GMM.
Example:

import some.other.pack
28https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/types/StaticUtils.html

https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/types/StaticUtils.html
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3. Name your model.
Example:

model MixtureModel { ... }

4. Identify all model variables: observed (constant) random variables (RV), latent RVs,
unknown parameters, and known (constant) parameters.
Example: observed RVs yi, latent RVs zi, unknown parameters π, µk, σk, and known
parameter α.

5. Identify model variables’ types, and values of known parameters.
Example: yi are real numbers, zi are integers, π is a simplex, µk are real numbers, σk

are real numbers, and α = [1, 1].

6. Declare all observed and latent RVs, and unknown parameters with the keyword random;
declare all known parameters with the keyword param.
Example:

random List<RealVar> observations
random Simplex pi
param Matrix concentrations

7. Initialize latent RVs and unknown parameters with their latent types, and initialize
known parameter values. Realization of observations will be delayed until inference.
Example:

random List<RealVar> observations
random Simplex pi ?: latentSimplex(2)
param Matrix concentrations ?: fixedVector(1.0, 1.0)

8. Next we declare their respective distributions in laws{...}.
Example:

pi | concentration ~ Dirichlet(concentration)

9. Use for loops to declare over a list of variables for cleaner code.
Example:

for (int k : 0 ..< means.size) {
means.get(k) ~ Normal(0.0, pow(10.0, 2.0))

}

10. Perform inference by using the CLI. Append --help to the CLI for model-specific input
description.
Example:

blang --model jss.gmm.MixtureModel \
--model.observations file "path/to/line_separated_values.txt"
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9. Custom samplers for custom data structures

Although the focus of this section is on custom data structures and samplers, it will also
provide insight to Blang’s underlying sampling mechanisms.

In examples we have demonstrated thus far, sampling variables could be handled via default
samplers. This luxury is typically unavailable when working with complex state spaces such as
trees, partitions, permutation spaces, or more generally discrete, non-ordinal spaces. In such
situations Blang still assists the user in several ways described in more detail in Section 10.
Here we focus on how Blang helps implement a complete sampler for a model that consists of
such custom data structures.

Consider a model with latent variables taking values in a set of permutations (perfect bipartite
matching). For example, record linkage problems (Tancredi and Liseo 2011; Steorts, Hall, and
Fienberg 2016) rely on this type of latent variable. In short, record linkage is the process of
matching de-identified noisy records from multiple data sources that reference the same entity
or individual. For example, consider a datum taking value 170 in one dataset, and 170.1 in
another dataset. The process of recognizing these two data reference the same entity is a case
of record linkage. In the following, we demonstrate how to implement a custom sampler for
data of type permutation.

We will implement a data type, Permutation, equipped with its tailor-made sampler, then

package jss.perm

import org. eclipse .xtend.lib. annotations .Data
import blang.mcmc. Samplers
import java.util. Random
import static java.util. Collections .sort
import static java.util. Collections . shuffle
import java.util.List

@Samplers ( PermutationSampler )
@Data class Permutation {

val List <Integer > connections

new (int componentSize ) {
connections = (0 ..< componentSize ). toList

}

def int componentSize () {
return connections .size

}

def void sampleUniform ( Random random ) {
sort( connections )
shuffle ( connections , random )

}

override String toString () {
return connections . toString

}
}

Figure 11: Permutation class programmed in Xtend.
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apply it in the context of a model.29 We begin by implementing a class describing how
permutations will be encoded. Note a permutation can be represented with or stored as a
list of integers. We present an implementation of the Permutation class in Figure 11, and
discuss each component individually.30

A first observation is the annotation @Samplers(...) which informs the runtime engine to
sample Permutation objects with an instance of PermutationSampler.31 We will discuss
PermutationSampler later.
A second observation is the annotation @Data.32 Briefly, this annotation should be interpreted
as a data class, a terminology in object oriented programming (and an unfortunate clash with
the conventional use of “data” in statistics), meaning the class can only declare final fields,
and that .equals, .hashcode are automatically implemented in addition to other defaults.
Moving on to the main code block, as noted previously, we can represent the mathematical
permutation object with a list of integers, where each element in the list is the permuted value
of the element’s index. Thus we encoded the permutation object with the field connections,
and a constructor as repeated below:

val List<Integer> connections

new (int componentSize) {
connections = (0 ..< componentSize).toList

}

This permutation constructor is to related to Section 6’s latentSimplex(K) constructor for
simplex variables. We will see its use later to construct a latent permutation to be sampled.
Technically, this is all that is required to represent the permutation type. However, it will be
convenient to define a few more helper functions, in particular a function sampleUniform to
uniformly draw a realization of a permutation.

def void sampleUniform(Random random) {
sort(connections)
shuffle(connections, random)

}

Notice sampleUniform sorts connections, then shuffles connections in-place. The sorting is
required from a computational perspective to ensure the sampling is not affected by the
connection’s current state, thus uniform when shuffled. In other words, it enforces the con-
tract that for a given random seed encoded in the rand object, the behavior of the generate
block is fully deterministic and not affected by the current state of the object. This behavior
is exploited to design test cases, as in TestCompositeModel.xtend described shortly. The

29Complete and commented implementations in this section are available in the reproduction materi-
als located in the directory reproduction_materials/example, or at https://github.com/UBC-Stat-ML/
JSSBlangCode/tree/master/reproduction_material/PermutationExample/src.

30See https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/
PermutationExample/src/main/java/jss/perm/Permutation.xtend.

31More than one sampler can be specified as a comma-separated list, more on this in Section 12.7.
32Complete documentation is available at http://archive.eclipse.org/modeling/tmf/xtext/javadoc/2.

9/org/eclipse/xtend/lib/Data.html.

https://github.com/UBC-Stat-ML/JSSBlangCode/tree/master/reproduction_material/PermutationExample/src
https://github.com/UBC-Stat-ML/JSSBlangCode/tree/master/reproduction_material/PermutationExample/src
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/PermutationExample/src/main/java/jss/perm/Permutation.xtend
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/PermutationExample/src/main/java/jss/perm/Permutation.xtend
http://archive.eclipse.org/modeling/tmf/xtext/javadoc/2.9/org/eclipse/xtend/lib/Data.html
http://archive.eclipse.org/modeling/tmf/xtext/javadoc/2.9/org/eclipse/xtend/lib/Data.html
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sampling performed in-place is a technical requirement for the inference engine, detailed in
Section 12.
Finally the last piece of the puzzle is the toString function. Its purpose is best illustrated by
an example followed by an explanation. Consider the following permutation.csv file below.
Without overriding toString our sample output would read the following:

sample,value
0,"Permutation [

connections = ArrayList (
2,
0,
1

)
]"
1,"Permutation [

connections = ArrayList (
1,
2,
0

)
]"
...

With the toString function, we have:

sample,value
0,"[2, 0, 1]"
1,"[1, 2, 0]"
...

Thus we see that by overriding the default string output of our object, we enable the engine to
output something more legible. One can customize this output to respect the tidy philosophy,
details of which we leave to Appendix D.
With all the pieces in place for our Permutation class, we are now ready to discuss samplers.
To perform posterior inference on permutation spaces, we need an invariant sampler designed
specifically for the object Permutation. In this example, we assume familiarity with the
Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953), and
begin by presenting PermutationSampler.xtend in Figure 12,33 followed by a breakdown of
its main components.
A first observation is the implementation of the Sampler interface, and the two annotations
@SampledVariable and @ConnectedFactor:34

class PermutationSampler implements Sampler {
@SampledVariable Permutation permutation
@ConnectedFactor List<LogScaleFactor> numericFactors

33See https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/
PermutationExample/src/main/java/jss/perm/PermutationSampler.xtend.

34For more on interfaces, see https://docs.oracle.com/javase/tutorial/java/concepts/interface.
html.

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/PermutationExample/src/main/java/jss/perm/PermutationSampler.xtend
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/PermutationExample/src/main/java/jss/perm/PermutationSampler.xtend
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
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package jss.perm

import java.util.List
import bayonet . distributions . Random
import blang.core. LogScaleFactor
import blang.mcmc. ConnectedFactor
import blang.mcmc. SampledVariable
import blang.mcmc. Sampler
import blang. distributions . Generators
import static java.lang.Math.exp
import static java.lang.Math.min
import static extension java.util. Collections .swap

class PermutationSampler implements Sampler {
@SampledVariable Permutation permutation
@ConnectedFactor List < LogScaleFactor > numericFactors

override void execute ( Random rand) {
val n = permutation . componentSize
val i = Generators . discreteUniform (rand , 0, n)
val j = Generators . discreteUniform (rand , 0, n)

val currentLogDensity = logDensity ()
permutation . connections .swap(i,j)
val newLogDensity = logDensity ()

val acceptProb = min (1.0 , exp( newLogDensity - currentLogDensity ))
val accept = Generators . bernoulli (rand , acceptProb )
if (! accept ) {

permutation . connections .swap(i, j)
}

}
def double logDensity () {

var double sum =0.0
for ( LogScaleFactor f : numericFactors ) sum += f. logDensity ()
return sum

}
}

Figure 12: Permutation sampler programmed in Xtend.

Briefly, this implies the PermutationSampler class necessarily implements methods specified
in the interface Sampler, namely execute. The execute method is invoked with each iteration
of the inference algorithm (Section 12.1), and updates our variable of interest in-place. The
field annotated with @SampledVariable will automatically be populated with an instance of
the object to be sampled, in this example, an instance of Permutation. This annotation in
tandem with @Samplers enables the linkage of variables and samplers.35 Similarly, the field
annotated with @ConnectedFactor will automatically be populated with factors dependent
on the sampled object, which is inferred automatically via a factor graph built from scope
analysis (described in detail in Section 12). By default once a type and its sampler have been
implemented, variables of such type will be sampled with this sampler. We discussed how
this default is altered in Section 7.10, and will discuss it again in Section 12.7.
With this setup, we are ready to implement the Metropolis algorithm for permutations as

35Sampling of multiple variables can also be performed. For example, the SDK incorporates an el-
liptic slice algorithm which samples many real variables at once, see https://github.com/UBC-Stat-ML/
blangSDK/blob/master/src/main/java/blang/distributions/NormalField.bl and https://github.com/
UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/EllipticalSliceSampler.xtend.

https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/distributions/NormalField.bl
https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/distributions/NormalField.bl
https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/EllipticalSliceSampler.xtend
https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/EllipticalSliceSampler.xtend
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override void execute ( Random rand) {
val n = permutation . componentSize
val i = rand. nextInt (n)
val j = rand. nextInt (n)

val currentLogDensity = logDensity ()
permutation . connections .swap(i,j)
val newLogDensity = logDensity ()

val acceptProb = min (1.0 , exp( newLogDensity - currentLogDensity ))
val accept = Generators . bernoulli (rand , acceptProb )
if (! accept ) {

permutation . connections .swap(i, j)
}

}

def double logDensity () {
var double sum =0.0
for ( LogScaleFactor f : numericFactors ) sum += f. logDensity ()
return sum
}

}

Figure 13: Implementation of a Metropolis algorithm for permutations.

shown in Figure 13. The implementation of execute() is a standard Metropolis algorithm
(Metropolis et al. 1953), which invokes logDensity when density evaluation is required. Since
the field numericFactors is a list of all log factors dependent on our variable, the logDensity
method merely returns the sum of log factors.
Notice the syntax Generators.bernoulli(rand, acceptProb) is used to determine accep-
tance of the proposal. This syntax is equivalent to Bernoulli.distribution(p).sample(rand)
(in fact the latter calls the former). However the second variant creates an intermediate object
of type IntDistribution which could be a performance issue as the body of the sampling
algorithm is in the inner loop of inference. In other contexts, having this intermediate ob-
ject is useful, e.g., if one would like to provide a distribution as input parameter to another
distribution, as in Section 11.4. As for the relationship with ... ~ Bernoulli(...), recall
that the difference is that ... ~ Bernoulli(...) is used in a declarative context, while
the first two syntaxes are for imperative blocks such as MCMC samplers (of course, in all
three variants there is no code duplications in the SDK, i.e., higher-level functions such as
the declarative syntax call lower level implementations).
With our custom Permutation type and PermutationSampler in place, we are ready to apply
them in models. Figure 14 shows an example of a uniform distribution over the permutation
space as implemented in UniformPermutation.bl.36

As we have seen before, the logf block provides a method for evaluating log densities, while
the generate block provides a method for sampling permutations in place. In this case, logf
returns the log density of a permutation with uniform distribution, and generate samples
a permutation uniformly. As for logFactorial, which computes log(n!), it is part of the
automatically imported functions described in Section 7.6 (a list of the most commonly used
automatically imported functions can also be found in Appendix F).

36See https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/
PermutationExample/src/main/java/jss/perm/UniformPermutation.bl.

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/PermutationExample/src/main/java/jss/perm/UniformPermutation.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/PermutationExample/src/main/java/jss/perm/UniformPermutation.bl
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model UniformPermutation {
random Permutation permutation

laws {
logf( permutation ) {

- logFactorial ( permutation . componentSize )
}

}

generate (rand) {
permutation . sampleUniform (rand)

}
}

Figure 14: Uniform distribution over a permutation space programmed in Blang, Uniform.bl.

package jss.perm

model CompositeModel {
random List <RealVar > y ?: fixedRealList (2.1 , -0.3 ,0.8)
random Permutation permutation ?: new Permutation (y.size)

laws {
permutation ~ UniformPermutation
for (int i : 0 ..< y.size) {

y.get(i) | permutation , i
~ Normal ( permutation . getConnections .get(i), 0.3)

}
}

}

Figure 15: Blang model illustrating use of composite laws with UniformPermutation sampler.

As with any distribution, model UniformPermutation can be used in composition with other
models. Here we present a minimal, illustrative example in Figure 15.37

This should look rather similar to other models, with the exception of the use of a cus-
tom constructor new Permutation(y.size) to instantiate the latent permutation variable.
CompositeModel provides a toy example of how one can incorporate UniformPermutation
into larger models. An example of custom data types with emphasis on a practical application
using a spike and slab model (Mitchell and Beauchamp 1988) is presented in Appendix A.2.
This concludes our tutorial on creating custom data types and samplers. We dedicate the
remainder of this section to showcasing some available resources that assist users in testing
the correctness of samplers.
A first test utility provided by the SDK is DiscreteMCTest, which is specialized to fully-
discrete spaces. The idea behind DiscreteMCTest is that, for small discrete spaces, we can
explicitly form a sparse transition matrix and numerically check properties such as invariance
and irreducibility. In our experience, many software defects can be found in problems just
large enough to achieve code coverage.
To run tests, we need to setup a project directory, i.e., create-blang-gradle-project

37See https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/
PermutationExample/src/main/java/jss/perm/CompositeModel.bl.

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/PermutationExample/src/main/java/jss/perm/CompositeModel.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/PermutationExample/src/main/java/jss/perm/CompositeModel.bl
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--name PermutationExample.38 This will create a directory named “PermutationExam-
ple”, with directory structure src/main/java. Place our implementations in this directory,
and create the additional directory PermutationExample/src/test/java/. Making sure the
package names are matching, place the file TestCompositeModel.xtend in the testing di-
rectory src/test/java/jss/perm/ with implementations as in Figure 16. The test can be
performed using ./gradlew test while in the PermutationExample directory, or via the
Eclipse IDE.
The DiscreteMCTest object takes in two arguments. The first argument is a small, discrete
model. The construction of this discrete model is achieved using the compiled builder in
CompositeModel.java (or in general, ModelName.java). The second argument is a lambda
function (denoted by square brackets) that accepts a model and creates a new object encoding
the identity of the current configuration, with identity being mediated by the .equals()
function of the returned object.
As DiscreteMCTest is created (i.e., handled in the construction of the object), the samplers
involved in the input model are automatically translated into explicit sparse transition ma-
trices, via a type of non-standard evaluation of the sampling code.39 Given these inputs,
irreducibility and invariance tests boil down to an application of linear algebra and graph
algorithms.
Detailed testing resources are discussed in Section 10.5, including tests for models defined on
continuous spaces.

10. Tools and software development kit
Blang comes with “batteries included”: more than just a language, it is a suite of tools and
libraries supporting common tasks in Bayesian data analysis. In this section, we present
an overview of these libraries. Briefly, we start with a description of the Blang integrated
development environment (IDE), followed by a discussion on how input of data is handled
in Blang. This includes an introduction to implementing plate and plated variables for plate
notation used in traditional graphical models. Next, we discuss how samplers, distributions,
and other components fit into the core inference algorithms’ architecture. Finally, we conclude
with brief discussions on post-processing options, monitoring logs, testing frameworks, and
additional packages and dependencies.

10.1. Integrated development environment (IDE)

Integrated development environments are software applications built for software construc-
tion. They are typically equipped with features such as syntax highlighting, code completion,
refactoring, debugging and other tools that assist programmers in software development.

Desktop IDE

We provide an IDE for Blang built on Eclipse. The only requirement is that Java 11, 13, or 15
38Commented implementations on testing are available in the reproduction materials located in the directory

PermutationExample.
39More information is available at https://www.stat.ubc.ca/~bouchard/blang/Testing_Blang_models.

html under “Exhaustive tests.”

https://www.stat.ubc.ca/~bouchard/blang/Testing_Blang_models.html
https://www.stat.ubc.ca/~bouchard/blang/Testing_Blang_models.html
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package jss.perm

import static blang.types. StaticUtils .*
import blang. runtime . SampledModel
import blang. validation . DiscreteMCTest
import com.rits. cloning . Cloner
import org.junit.Test
import static org. apache . commons .math3.util. CombinatoricsUtils . factorial
import static java.lang.Math.pow
import blang. runtime . internals . objectgraph . GraphAnalysis
import blang. runtime . Observations
import blang.types. ExtensionUtils

class TestCompositeModel {

val static y = fixedRealList (2.1 , -0.3, 0.8)
val static CompositeModel compositeModel = new CompositeModel . Builder ()

.setY(y)

. setPermutation (new Permutation (y.size))

.build

val static observations = {
val Observations result = new Observations
result . markAsObserved (y)
result

}

val static DiscreteMCTest test =
new DiscreteMCTest (

new SampledModel (new GraphAnalysis ( compositeModel , observations )),
[

val CompositeModel cm = model as CompositeModel
return new Cloner (). deepClone (cm. permutation )

]
)

@Test
def void stateSize () {

test. verbose = true
test. checkStateSpaceSize ( factorial (y.size) as int)

}

@Test
def void invariance () {

test. verbose = true
test. checkInvariance

}

@Test
def void irreducibility () {

test. verbose = true
test. checkIrreducibility

}
}

Figure 16: Xtend implementation to test a composite model TestCompositeModel.xtend.

should be installed. There are two ways to install it: one using the pre-packaged version,
the other by adding a plug-in to an already installed Eclipse instance. The former method
is more straightforward but currently we only distribute the pre-packaged Blang Eclipse for
Mac OS X (tested with Mac OS 10.11.6, 10.14.6, 10.15.7). The latter method supports Mac
OS X, Windows and Linux.
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For the Mac-specific method, download the IDE available at https://www.stat.ubc.ca/
~bouchard/blang/downloads/blang-mac-4.0.7.zip. Unzip the downloaded file and copy
the contents to a directory of your choice. The folder contains both the IDE, a template
for your own projects, and some command line tools. The first time you try to launch
Blang IDE, depending on the version of Mac OS X and/or security settings, you may get
a message saying the “app is not registered with Apple by an identified developer.” To
work around this, follow the instructions (from Apple) the first time you open the Blang
IDE (then Mac OS will remember your decision for subsequent launches) given at https:
//support.apple.com/en-ca/guide/mac-help/mh40616/mac.
The second installation process for the Blang IDE, which is the most portable across platforms,
is the following:

1. Install DSL tools for Eclipse, which can be downloaded from the Eclipse website.40 At
the time of writing, the supported version is Eclipse IDE for Java and DSL (domain
specific language) Developers, Release 2020-12 R.41 Using the standard version of Eclipse
(i.e., not the DSL version) and/or a different version is unlikely to work.

2. From Eclipse: select Install New Software from the Help menu.

3. Click Add and enter
https://www.stat.ubc.ca/~bouchard/maven/blang-eclipse-plugin-4.0.7/
in the location field.

4. Click Select All, Next, then follow instructions as prompted.

To create or open a new project, follow these instructions:

1. (Skip this step if you want to open an existing project.) To create a template for a
new project, if you have the Blang CLI installed, type create-blang-gradle-project
--githubOrganization myOrg --name myProject where you should replace “myOrg”
by the name of your organization, and “myProject” by the required name for the
project. You can also find a template project at https://github.com/UBC-Stat-ML/
blangExample (the method based on create-blang-gradle-project as it guarantees
the library versions will be in sync with the version of Blang used by the CLI).

2. The next step is to generate configuration files suitable for Eclipse. This can be done
by using the command bash setup-eclipse.sh which can be found at the root of a
freshly generated project, or ./gradlew assemble eclipse if an older template project
is used.

3. Starting from Eclipse’s menus, select File > Import > General > Existing project into
Workspace. Select the root of the project you created in the previous step.

4. The Blang project is ready. In the left tool bar in Eclipse, the project is in the file
explorer. Right click on src/main/java/[package name]/ and select the contextual
menu New > File. Name the file MyModel.bl. The extension choice must always be
.bl.

40https://www.eclipse.org/
41Linked at https://www.eclipse.org/downloads/packages/release/2020-12/r/

eclipse-ide-java-and-dsl-developers.

https://www.stat.ubc.ca/~bouchard/blang/downloads/blang-mac-4.0.7.zip
https://www.stat.ubc.ca/~bouchard/blang/downloads/blang-mac-4.0.7.zip
https://support.apple.com/en-ca/guide/mac-help/mh40616/mac
https://support.apple.com/en-ca/guide/mac-help/mh40616/mac
https://www.stat.ubc.ca/~bouchard/maven/blang-eclipse-plugin-4.0.7/
https://github.com/UBC-Stat-ML/blangExample
https://github.com/UBC-Stat-ML/blangExample
https://www.eclipse.org/
https://www.eclipse.org/downloads/packages/release/2020-12/r/eclipse-ide-java-and-dsl-developers
https://www.eclipse.org/downloads/packages/release/2020-12/r/eclipse-ide-java-and-dsl-developers
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Figure 17: A preview of the Blang IDE. A warning of a syntactical error is underlined in red.

The key IDE features useful for development include:

• The ability to navigate Blang code by, for example, holding the “command” key while
clicking on any Blang symbol to jump to its definition, or hovering on the symbol to
view its documentation. This and other related features are possible thanks to the static
type system used by Blang.

• Incremental compilation in parallel in the background, which implies little time is spent
waiting for compilation on modern multicore architectures. It also means that error
messages appear interactively as the user types. See example in Figure 17.

• Quickly viewing the generated Java files, by right clicking anywhere in a Blang editor
and selecting “Open Generated File”.

• From any generated file, inference on the model can be launched by right-clicking “Run
As... Java Application”. After doing this the first time, a shortcut is accessible via the
menu “Run > Run Configurations...” Run Configurations allow setting the command-
line arguments being passed to Blang. When using this method to launch a Blang
execution, note that the argument --model [name of model] should be skipped.

• A full-feature debugger is built-in. Double clicking on the left margin of a Blang or
Xtend file sets a break point. Use the menu “Debug > Debug Configurations” to start
the debugger.

• Being built on Eclipse, the IDE also inherits Eclipse’s comprehensive set of features,
such as utilities for unit testing, code coverage analysis, git integration, visualization of
call and type hierarchies among others.
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More information on the Blang IDE is available from the Blang documentation page, https:
//www.stat.ubc.ca/~bouchard/blang/Blang_IDE.html.

Web IDE

To facilitate deployment on large number of cores on the cloud, for example in a teaching
or reproducible research context, Blang is also available on the Web scientific platform Silico
(https://silico.io/).
To setup a Blang project in Silico, create a Model from the user profile page, and create a
file with .bl extension. Command-line arguments can be passed in by pasting them in a file
called configuration.txt.

10.2. Data types provided in the SDK

The interfaces RealVar and IntVar are automatically imported.42 They can be either la-
tent (unobserved, sampled), or fixed (conditioned upon). See Table 10 in Appendix F for
commonly used functions to provide default initializations to these basic random variables.
Blang’s linear algebra is based on xlinear (for more information see Appendix C.3) which is
in turn based on a portfolio of established libraries. The basic classes available are Matrix,
DenseMatrix, and SparseMatrix. Blang/XBase allows operator overloading (Efftinge et al.
2013), so it is possible to write expressions of the type matrix1 * matrix2, 2.0 * matrix,
and so on. Vectors do not have a distinct type, they are just 1 × n or n × 1 matrices.
Standard operations are supported using unsurprising syntax, e.g., identity(100_000) (un-
derscore delimited 100,000), ones(3, 3), matrix.norm, matrix.sum, matrix.readOnlyView,
matrix.slice(1, 3, 0, 2), matrix.cholesky, etc.43

Blang augments xlinear with two specialized types of matrices: Simplex, vector of positive
numbers summing to one, and TransitionMatrix. Refer to Table 11 in Appendix F for key
functions related to these specialized types of matrices.

10.3. Distributions

A range of distributions are included in the SDK. See Appendix E for the current list. These
distributions are themselves written in Blang. The SDK also contains tests covering all the
included distributions. Our development workflow performs all the unit tests each time a
commit is made in the Blang GitHub repository.
The implementation of the random number generators used in forward simulation of the SDK
distributions are all grouped in the file Generators.44

10.4. Input

Inputs are parsed and managed via the inits package’s injection framework. Model variables
can be provided a default initialization in the model’s .bl file, or they can be initialized

42https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/IntVar.html, https:
//www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/RealVar.html

43See https://github.com/UBC-Stat-ML/xlinear for more information on xlinear.
44https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/distributions/Generators.html

https://www.stat.ubc.ca/~bouchard/blang/Blang_IDE.html
https://www.stat.ubc.ca/~bouchard/blang/Blang_IDE.html
https://silico.io/
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/IntVar.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/RealVar.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/RealVar.html
https://github.com/UBC-Stat-ML/xlinear
https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/distributions/Generators.html
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import blang.inits. ConstructorArg ;
import blang.inits. DesignatedConstructor ;
import blang.inits. GlobalArg ;
import blang. runtime . Observations ;

class Type1
{

...
@DesignatedConstructor
def static Type1 loadObservedData (

@ConstructorArg (value = "file") File file ,
@ConstructorArg (value = " option ") Integer x,
@GlobalArg Observations observations )

{
val Type1 result = doSomethingWith (file , x) // Parse the file
observations . markAsObserved ( result )
return result

}
...

}

Figure 18: Xtend code illustrating how to parse custom data types Type1.xtend.

with arguments through the CLI. Should both methods exist, the latter takes precedence; an
example exposing only the pertinent snippets of code is shown below in Name.bl:

model Name {
param IntVar h ?: 3
param IntVar a
random Type1 p
...

}

The field h is initialized to 3 by default, but can be overridden by the command-line argument
to, say 5, --model.h 5. The field a must be assigned a value, say 9, via the CLI through
--model.a 9. For observations or custom data types such as Type1, annotations can be easily
added to control parsing. The following file Type1.xtend is an example of a constructor that
can parse command-line arguments such as --model.p.file abc.csv --model.p.option
2.
In the code above, doSomethingWith(file, x) is any user-defined function that returns the
parsed result as desired.
Additional information is provided at the relevant Blang documentation pages.45

Plate notation
Simple collections of random variables can be handled via Java’s built-in List and related
data structures. However, this can quickly become cumbersome and error-prone when working
with sophisticated hierarchical Bayesian models. To address this problem, Blang provides a
specialized data structure based on the plate notation, a method for representing repeated
random variables in a graphical model. A concise encoding of these models can be achieved
with built-in types Plate and Plated.

45https://www.stat.ubc.ca/~bouchard/blang/Javadoc.html.

https://www.stat.ubc.ca/~bouchard/blang/Javadoc.html
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Country Rocket nLaunches nFails
CHN Chang Zheng 1 2 0
ESA Ariane 44P 15 0
RUS Molniya 8K78M 272 13
USA Delta 2914 30 2
...

...
...

...

Table 3: Rocket launching data in tidy format.

αc ∼ Gamma(1, 1)
βc ∼ Gamma(1, 1)

pr,c | αc, βc ∼ Beta(αc, βc)
fr,c | pr,c, lr,c ∼ Binomial(lr,c, pr,c) fr,c

pr,c

αc βc

lr,c

c ∈ Country

r ∈ Rocket

Figure 19: Left: a toy hierarchical model for the rocket launching data set. Indices c, r
index countries and rockets respectively. Observations fr,c, lr,c are the number of failures and
launches for rocket r in country c respectively. Latent variables pr,c, αc, βc are parameters
of interest. Right: A graphical representation of the hierarchical rocket model with plate
notation.

Consider the rocket launching data in tidy format in Table 3. “Country” is the origin of the
rocket, “Rocket” is the name of rockets, “nLaunches” is the number of launches, and “nFails”
is the number of failed launches. A toy model for this data set is the hierarchical model in
Figure 19. The Blang code for the rocket model is provided in Figure 20.46 The complete
code and data can also be found in the prepackaged repository of examples.
A first observation is the additional param GlobalDataSource data, which we have not seen
in our previous models. We will discuss its function in more details shortly. At a high level,
it is used to specify a CSV file from which many variables will be parsed.
A second observation is the use of Plate<...> and Plated<...> types.

param Plate<String> countries
param Plate<String> rockets

46https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/
jss/hier/Rocket.bl

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/hier/Rocket.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/hier/Rocket.bl
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package jss.hier

model Rocket {

param GlobalDataSource data

param Plate <String > countries
param Plate <String > rockets

random Plated <RealVar > alpha
random Plated <RealVar > beta
random Plated <RealVar > prob
random Plated <IntVar > nFails
param Plated <Integer > nLaunches

laws {
for(Index <String > c : countries . indices ()){

alpha.get(c) ~ Gamma (1 ,1)
beta.get(c) ~ Gamma (1 ,1)

for(Index <String > r : rockets . indices (c)){
prob.get(r, c) |

RealVar a = alpha.get(c),
RealVar b = beta.get(c)
~ Beta(a, b)

nFails .get(c, r) |
RealVar p = prob.get(r, c),
Integer n = nLaunches .get(r, c)
~ Binomial (n, p)

}
}

}
}

Figure 20: Blang code for the rocket model Rocket.bl.

random Plated<RealVar> alpha
random Plated<RealVar> beta
random Plated<RealVar> prob
random Plated<IntVar> nFails
param Plated<IntVar> nLaunches

A Plate is a collection of indices, such as country and rocket indices (columns one and two
of our example data set above). As they are non-random known indices, we declare plates
with param. On the other hand Plated types, as its name suggests, are variables within
plates. The usual rules for selection between param or random apply to plated variables (see
Section 5.1).
With this setup, we are ready to examine the laws block.

for(Index<String> c : countries.indices()){
alpha.get(c) ~ Gamma(1,1)
beta.get(c) ~ Gamma(1,1)

for(Index<String> r : rockets.indices(c)){
prob.get(r, c) |

RealVar a = alpha.get(c),
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RealVar b = beta.get(c)
~ Beta(a, b)

nFails.get(c, r) |
RealVar p = prob.get(r, c),
Integer n = nLaunches.get(r, c)
~ Binomial(n, p)

}
}

This should look rather similar to code we have presented thus far. We highlight the key
differences: first, the set of index values is obtained by appending .indices to a Plate
variable. Each index is of type Index<T>, where T is the same type as the corresponding
Plate<T>. Plated variables can subsequently be retrieved by using .get(). Second, notice
the syntax of the second for loop over rocket indices, in particular rockets.indices(c).
This syntax retrieves the set of rocket indices such that its country index is c. Lastly, we
note the ordering of indices within .get() is exchangeable, for example, nFails.get(c, r)
is equivalent to nFails.get(r, c). This is possible since Index<...> objects keep track of
which plate they belong to. Additional methods available for types Index<> are described in
Table 13 in Appendix F.
With variables, parameters, and laws declared, we tie these concepts back to the promised
discussion of param GlobalDataSource data. Its purpose becomes clear when we invoke
blang and its corresponding arguments:

$ git clone https://github.com/UBC-Stat-ML/JSSBlangCode.git
$ cd JSSBlangCode/reproduction_material/example/
$ blang --model jss.hier.Rocket \
> --model.data data/rockets.csv \
> --model.countries.name Country \
> --model.rockets.name Rocket \

Variables of type Plate and Plated can be put in correspondence with a column in a tidy CSV
file. Command-line arguments can be used to set the CSV file for each variable individually.
Alternatively by declaring a dummy variable of type GlobalDataSource, here called data, we
can set a default CSV file that will be used by default by all Plate and Plated variables. In our
example, specifying the default CSV is achieved via --model.data pathToData/data.csv.
For each Plate and Plated variable, the data input algorithm will attempt to find a column
in the CSV file matching with the variable name. The algorithm does not require all columns
in the CSV file to be matched to Plate or Plated variables.
By default, matching is done by using the same string for the column header as the variable
name, but this can be overridden via CLI arguments. In our example, this is achieved via
e.g., --model.rockets.name Rocket. Notice we did not require this argument for nFails,
as the column name in the CSV file is also nFails.
When a plated variable is not found in the CSV file, it is assumed to be latent (a message
is displayed to standard out when this happens). Should a plate not correspond to a col-
umn in the CSV, then its maxSize should be set via, e.g., --model.varName.maxSize 3, or
initialized in the model. An example using the CLI is presented in the advanced tutorial in
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package jss.gmm

model MixtureModelPlated {

param GlobalDataSource data

param Integer K ?: 2
param Plate <Integer > N
param Plate <Integer > components ?: Plate. ofIntegers (" components ", K)

random Plated <IntVar > z
random Plated <RealVar > y
random Plated <RealVar > mu
random Plated <RealVar > sd
random Simplex pi ?: latentSimplex (K)

laws {
pi | K ~ SymmetricDirichlet (K, 1.0)

for (Index <Integer > k : components . indices ) {
mu.get(k) ~ Normal (0.0 , 100.0)
sd.get(k) ~ ContinuousUniform (0.0 ,10.0)

}

for (Index <Integer > i : N. indices ) {
z.get(i) | pi ~ Categorical (pi)
y.get(i) | List <RealVar > muList = mu. asList ( components ),

List <RealVar > sdList = sd. asList ( components ),
IntVar k = z.get(i)

~ Normal ( muList .get(k) , pow( sdList .get(k), 2.0))
}

}
}

Figure 21: Implementation of a mixture model using plate syntax, MixtureModelPlated.bl.

Appendix A.2,47 and an example using default initializations is shown below.
Recall the Gaussian mixture model from Section 6. We provide an implementation of the same
model with plate syntax in Figure 21.48 A first observation is the use of Plate.ofIntegers()
to initialize a plate with a predetermined size. The function ofIntegers() takes in two
arguments: a column name, and a maximum size. For other related functions, see Appendix F.
A second observation is the asList() function, which returns the given plate (components)
as a list.

y.get(i) | List<RealVar> muList = mu.asList(components),
List<RealVar> sdList = sd.asList(components),
IntVar k = z.get(i)

~ Normal(muList.get(k) , pow(sdList.get(k), 2.0))

Similar conversion utilities automatically imported from ExtensionUtils are documented in
Table 12 of Appendix F.49 With this setup, our command line arguments for inference can
be written succinctly:

47Use the argument --model Rocket --help for full documentation.
48https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/

jss/gmm/MixtureModelPlated.bl
49https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/types/ExtensionUtils.html

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/gmm/MixtureModelPlated.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/gmm/MixtureModelPlated.bl
https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/types/ExtensionUtils.html
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model PlatedMatrixExample {
param Plate <String > dims
param Plate <String > replicates
random PlatedMatrix vectors
laws {

for (Index <String > n : replicates . indices ) {
vectors . getDenseVector (dims , n) |

int size = dims. indices .size
~ MultivariateNormal (dense(size), identity (size). cholesky )

}
}

}

Figure 22: Implementation of plated matrix in Blang, PlatedMatrixExample.bl.

$ git clone https://github.com/UBC-Stat-ML/JSSBlangCode.git
$ cd JSSBlangCode/reproduction_material/example/
$ blang --model jss.gmm.MixtureModelPlated \
> --model.data data/obs1Plated.csv

PlatedMatrix

One special case of a Plated variable is the type PlatedMatrix,50 which is a built-in type
that facilitates easy representation of higher dimensional random variables such as random
vectors or matrices, as well as lists and arrays of vectors and matrices.
PlatedMatrix can be used to represent both random vectors and matrices that are enclosed
within a Plate. PlatedMatrix generally works in the same way as Plated, but provides spe-
cialized mechanisms to access vectors, matrices, simplices, etc. For example, to access a dense
vector, use the method myPlatedMatrix.getDenseVector(myRowPlate, myParentIndex1,
myParentIndex2, ...). Here myRowPlate refers to the plate from which row indices will be
constructed. The indices can be of arbitrary type (e.g., integer or string-valued); a mapping
of indices to non-negative integers is maintained internally.
The other arguments, myParentIndex1, myParentIndex2, ... correspond to the indices
for the plates in which this vector belongs to. For example, see how a set of vectors can be
obtained in the Blang file PlatedMatrixExample.bl given also in Figure 22.

10.5. Testing framework

There is considerable emphasis in the Markov chain Monte Carlo (MCMC) literature on
efficiency, but much less on correctness, in the sense of the implementation being ergodic
with respect to the distribution of interest. Consider a Monte Carlo procedure producing
samples X1, X2, . . . , targeting some distribution π. We say the procedure is correct if its
ergodic averages for any integrable function f admits a law of large numbers converging to
the posterior expectation of f under the target π,

1
N

N∑
i=1

f(Xi) →
∫
f(x)π(x)dx,

almost surely.
50https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/types/PlatedMatrix.html

https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/types/PlatedMatrix.html
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package blang. validation

import java.util. function . Supplier
import bayonet . distributions . ExhaustiveDebugRandom

class UnbiasednessTest {
def static double expectedZEstimate (Supplier <Double > logZEstimator ,

ExhaustiveDebugRandom exhaustiveRand ) {
var expectation = 0.0
var nProgramTraces = 0
while ( exhaustiveRand . hasNext ) {

val logZ = logZEstimator .get
expectation += Math.exp(logZ) * exhaustiveRand . lastProbability
nProgramTraces ++

}
println (" nProgramTraces = " + nProgramTraces )
return expectation

}
}

Figure 23: Implementation of the unbiasedness test, UnbiasednessTest.xtend.

Two common defects of an incorrect Monte Carlo procedure include erroneous mathematical
derivations of algorithms and software implementation bugs. This section discusses the tools
available to test and detect both types of problems.

Exhaustive random objects

We provide in bayonet.distributions.ExhaustiveDebugRandom a non-standard replace-
ment implementation of bayonet.distributions.Random which enumerates all the possible
realizations of an arbitrary finite random process along with the probability of each realiza-
tion.

Testing unbiasedness

We use ExhaustiveRandom to test the unbiasedness of the normalization constant estimate
provided by our sequential Monte Carlo (SMC) implementation. The code forming the basis
of this test is shown in Figure 23. The code defines a function, expectedZEstimate which
takes as input an estimator logZEstimator and an ExhaustiveRandom object. The estimator
is assumed to use internally the ExhaustiveRandom object to provide a randomized estimate.
Assuming that the estimator is defined on a finite probability space, the code can therefore
compute the exact value of the expectation of logZEstimator.
Note that SMC executed on a small finite model, e.g., a short hidden Markov model, has a
finite number of possible execution traces (defined as all possible intermediate particles, i.e.,
possible proposal and resampling vectors).
This code is called in our continuous integration test suite to verify unbiasedness of our SMC
implementation on a model small enough for the number of possible execution traces to be
manageable while achieving code coverage.51

The output of a test based on the unbiasedness test has the form:
51https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/blang/

TestSMCUnbiasness.xtend

https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/blang/TestSMCUnbiasness.xtend
https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/blang/TestSMCUnbiasness.xtend
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nProgramTraces = 23868
true normalization constant Z: 0.345
expected Z estimate over all traces: 0.34500000000000164

where true normalization constant Z is computed by explicitly enumerating all states
in the space of the posterior (SMC code is not needed since the state space is finite), and
expected Z estimate over all traces is computed by enumerating all SMC execution
traces along with their probabilities.

Tests based on linear algebra
We can leverage the exhaustive random object to assert the invariance and irreducibility of
a transition kernel, in a similar flavor to the test for unbiasedness. As such, the aim of this
short section is to highlight the key ideas of such tests, with details deferred to reference code.
The DiscreteMCTest contains algorithms that use ExhaustiveDebugRandom to check via lin-
ear algebra whether Markov kernels on small discrete (finite state space) models are invariant
and irreducible.52

Algorithmically, DiscreteMCTest takes a model and a kernel, and constructs the correspond-
ing sparse transition matrix. From this matrix it is then trivial to check, numerically, irre-
ducibility and invariance via linear algebra and graph algorithms. See TestDiscreteModels
for an example.53

Exact invariance test
Tests discussed thus far focused around the idea of exhaustively enumerating outcomes and
probabilities. Although these tests are attractive due to their deterministic property, they
are only applicable to a small set of models, namely models with finite state spaces. These
tests are not applicable to models with continuous state spaces.
For continuous models, we provide a modified form of the Geweke test (Geweke 2004), which
we call the exact invariance test. Consider the goal of testing the invariance of a kernel
T with respect to some target distribution π(θ | y) ∝ pθ(θ)py|θ(y | θ). Assume T is a
combination of individual kernels Ti for i = 1, 2, . . . , Q. Briefly, the Geweke test examines the
correctness of an MCMC procedure by comparing two sets of simulated random variables,
F = {F1, F2, . . . , FM1} and G = {G1, G2, . . . , GM2} using an approximate test based on an
asymptotic result.
The set F is generated by the marginal-conditional simulator defined by iterating the three
steps:

1. θm ∼ pθ(·),

2. ym | θm ∼ py|θ(· | θm),

3. Fm = f(θm, ym),

form = 1, 2, . . . ,M1 and some integrable, real-valued test function f . Similarly, G is generated
by the successive-conditional simulator defined by the following steps:

52https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/validation/DiscreteMCTest.html
53https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/blang/

TestDiscreteModels.xtend

https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/validation/DiscreteMCTest.html
https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/blang/TestDiscreteModels.xtend
https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/blang/TestDiscreteModels.xtend


54 Blang: Bayesian Modeling of General Data Structures

1. θ1 ∼ pθ(·),

2. y1 | θ1 ∼ py|θ(· | θ1),

3. G1 = f(θ1, y1),

4. iterate for m = 2, . . . ,M2:

(a) θm | θm−1, ym−1 ∼ T (· | θm−1, ym−1)
(b) ym | θm ∼ py|θ(· | θm)
(c) Gm = f(θm, ym).

The Geweke test is based on the observation that both F and G can be used to approximate
the expectation of f under the joint distribution of pθ and py|θ. However, there are several
limitations to the original Geweke approach:

1. The validity of the approximate test relies on T being irreducible. As a consequence,
individual kernels Ti’s often cannot be tested in isolation.

2. The test is an approximate test relying on asymptotics. It is difficult to verify the
accuracy of this asymptotic result in practice. Furthermore, the problem is compounded
when several such tests need to be combined using a multiple-testing framework.

3. The validity of the approximate test also relies on a central limit theorem for Markov
chains to hold, which typically involves establishing geometric ergodicity. The task of
proving geometric ergodicity is model-dependent and rather involved.

To address the problems above, Blang employs a modified version of the Geweke test, the
exact invariance test (EIT). The EIT does not rely on irreducibility of Ti’s, thus allowing
individual tests. Furthermore, the test does not rely on establishing geometric ergodicity,
and as its name suggests, it is an exact test independent of asymptotics.
Similar to the Geweke test, it compares two sets of samples F and H = {H1, H2, . . . ,HM3}.
The samples H are generated from the exact invariant simulator defined by the steps:

1. θ1,m ∼ pθ(·),

2. y1,m | θ1,m ∼ py|θ(· | θ1,m)

3. For k = 2, 3, . . . ,K

(a) θk,m | θk−1,m, yk−1,m ∼ Ti(· | θk−1,m, yk−1,m)

4. Hm = f(θK,m, yK,m).

By construction, for any K ≥ 1, j ∈ {1, 2, . . . ,M1}, l ∈ {1, 2, . . . ,M3}, Fj and Hl are equal in
distribution if and only if Ti is π-invariant. Thus the appropriate exact tests (e.g., Fisher’s ex-
act test), or well-understood asymptotic tests (e.g., Kolmogorov-Smirnov) may be employed.
Note Hm’s are also independent, thus the asymptotics do not rely on irreducibility nor ge-
ometric ergodicity; standard tests for independent and identically distributed (IID) random
variables can be employed.
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An example of how EIT is used in Blang to automatically test all distributions in the SDK can
be found in https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/
blang/TestSDKDistributions.xtend. A complete example of an EIT for our permutation
model (Section 9) is provided in the reproduction materials.

10.6. Package distribution and injection
Distributing and reusing packages is standard practice in software development. Any user
can create a model and publish it in a versioned fashion via GitHub.54

To use a package developed by another user, Blang projects compiled via the CLI automati-
cally handle dependencies hosted on GitHub by parsing a file called dependencies.txt placed
in the project root directory. For correct parsing, GitHub dependencies’ format must be of
the forms provided in dependencies.txt:

com.github.Username:Repository:Branch-CommitHash
com.github.Username:Repository:ReleaseTag

where CommitHash may be replaced by SNAPSHOT to automatically select latest commits.
For compilation through the Eclipse IDE, users should manually input dependencies in the
build.gradle file. To distribute packages, users can create a Blang project with the CLI
create-blang-gradle-project, and publish it in a GitHub repository.

11. Design patterns
This section discusses design patterns specific to programming in Blang. The goal of these
design patterns is to enable users to design models going beyond Bayes nets, improve com-
putational efficiency, and improve code readability.

11.1. Undirected graphical models
The mechanisms in Blang’s default inference engine require the models to be in generative
normal form. In some cases, in particular for users interested in undirected graphical models or
Markov random fields (MRF), this may appear a stringent condition, since forward simulation
in these models is computationally intractable.
We illustrate here a construction based on a type of “pseudo-prior”. Let f(x) ∝

∏
i∈I ψi(x)

denote an MRF, where I denotes a set of cliques that factorizes the MRF, and the subscripts i
index factors of the respective cliques. We rewrite the model as f(x) ∝ f0(x) ∏

i∈I ψ̃i(x), where
f0(x) is a “tractable” pseudo-prior. By tractable, we mean that we can sample and compute
the normalization constant of the pseudo-prior. Annealing is then automatically performed
on the factors ∏

i∈I ψ̃i(x) only, not on the pseudo-prior, ensuring finite marginalization for all
interpolating distributions.
For example, consider the Ising model (Ising 1925) which is a type of MRF. In this case we
use a product of independent Bernoulli random variables as a pseudo-prior. Note, we will
make use of an “empty pipe symbol”, i.e., “| IntVar first = ...” which is explained after
the example. We present the Blang code to implement the Ising model in Figure 24.

54Under the hood, the mechanism for dependency management is Maven. However, GitHub repositories are
seamlessly imported via JitPack. See https://jitpack.io/ for details.

https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/blang/TestSDKDistributions.xtend
https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/test/java/blang/TestSDKDistributions.xtend
https://jitpack.io/
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model Ising {
param Double moment ?: 0.0
param Double beta ?: log (1 + sqrt (2.0)) / 2.0
param Integer N ?: 5
random List <IntVar > vertices ?: latentIntList (N*N)

laws {
for ( UnorderedPair <Integer , Integer > pair : squareIsingEdges (N)) {

| IntVar first = vertices .get(pair. getFirst ),
IntVar second = vertices .get(pair. getSecond ),
beta

~ LogPotential ({
if (( first < 0 || first > 1 || second < 0 || second > 1))

return NEGATIVE_INFINITY
else

return beta *(2* first -1) *(2* second -1))
})

}
for ( IntVar vertex : vertices ) {

vertex | moment ~ Bernoulli ( logistic ( -2.0* moment ))
}

}
}

Figure 24: Ising model programmed in Blang, Ising.bl.

model LogPotential {
param RealVar logPotential
laws {

logf( logPotential ) {
return logPotential

}
}

Figure 25: Implementation of log potential in Blang, LogPotential.bl.

Rather than using logf here for the likelihood, which would have violated the technical con-
ditions for generative normal forms, we use the LogPotential utility in the SDK (shown for
reference in LogPotential.bl).55 Since LogPotential (Figure 25) does not define random
variables, when it is invoked there are no variables to the left of the conditioning symbol
in | IntVar first = .... This follows naturally from the formal definition of compos-
ite laws. A second observation worthy of note is the conditioning of | IntVar first =
vertices.get(pair.getFirst) as opposed to | vertices. This prevents the runtime archi-
tecture from assuming that these factors depend on the full vertices object, hence improving
computational efficiency by a scaling proportional to the size of vertices. We emphasize this
computational advantage in Section 11.2 with a Markov chain example.

11.2. Delayed graphical model construction

The runtime engine is able to decrease computational expense when it can detect sparsity
patterns in models. This is handled automatically for simple objects but requires user input

55https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/
jss/others/LogPotentialExample.bl

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/LogPotentialExample.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/LogPotentialExample.bl
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model MarkovChain {

param Simplex initialDistribution
param TransitionMatrix transitionProbabilities
random List <IntVar > chain

laws {
chain.get (0) | initialDistribution ~ Categorical ( initialDistribution )

for (int step : 1 ..< chain.size) {
chain.get(step) | IntVar previous = chain.get(step - 1),

transitionProbabilities
~ Categorical ({

if ( previous >= 0 && previous < transitionProbabilities .nRows)
transitionProbabilities .row( previous )

else
invalidParameter

})
}

}
}

Figure 26: Markov chains programmed in Blang, MarkovChain.bl.

for complex objects. For an example with a complex object chain consider the following
Markov chain provided in Figure 26.56

We condition on the previous step instead of the whole chain, using chain.get(step) |
IntVar previous = chain.get(step - 1) as opposed to chain.get(step) | chain. This
prevents the runtime architecture from computing factors involving the full chain object,
potentially improving computational efficiency by a scaling proportional to the chain size. In
other words, here the exact specification of the graphical model is delayed until the data is
available.
In general, it is optimal to condition on the smallest possible scope. For example, suppose
we have SomeObject x with conditional distribution on ConditionalObject y, where y has
two IntVar fields a and b. If the distribution on x only requires the first field of y, a, then
we should condition only on a. Hence, we use x | IntVar v = y.a ~ Distribution(v)
as opposed to x | y ~ Distribution(y.a). For a detailed understanding of this efficiency
gain, we refer readers to Section 12.7.

11.3. Model reparameterization

It is often the case that distribution families can be written using different parameterizations,
or that a family can be expressed as a special case of another family. Following “Don’t Repeat
Yourself” (DRY) coding principles, the following pattern shows what is the best practice to
express such reparameterizations.
To illustrate the pattern, consider how the Exponential distribution is coded in Figure 27 of
the Blang SDK as a special case of the Gamma distribution.57

56https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/
jss/others/MarkovChainExample.bl

57https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/
jss/others/ExponentialExample.bl

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/MarkovChainExample.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/MarkovChainExample.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/ExponentialExample.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/ExponentialExample.bl
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model Exponential {
random RealVar realization
param RealVar rate
laws {

realization | rate ~ Gamma (1.0 , rate)
}}

Figure 27: Exponential distribution programmed in Blang, Exponential.bl.

model IntMixture {
param Simplex proportions
param List < IntDistribution > components
random IntVar realization

laws {
logf( proportions , components , realization ) {

var sum = 0.0
if ( components .size !== proportions . nEntries ) {

throw new RuntimeException
}
for (i : 0 ..< components .size) {

val prop = proportions .get(i)
if (prop < 0.0 || prop > 1.0) return NEGATIVE_INFINITY
sum += prop * exp( components .get(i). logDensity ( realization ))

}
return log(sum)

}
}

generate (rand) {
val category = rand. categorical ( proportions . vectorToArray )
return components .get( category ). sample (rand)

}
}

Figure 28: Integer mixture model programmed in Blang, IntMixture.bl.

11.4. Distributions as parameters

In many situations, it is useful to have one or several parameters of a model to be themselves
distributions. Consider for example a mixture model: it takes as input a list of distributions
as well as mixture proportions, and creates a new distribution from it. Figure 28 provides an
example of how this is implemented for mixtures of integer-valued distributions in Blang.
The IntMixture model can be invoked in the same manner as other models. An illustrative
example using a mixture of two Poisson distributions is shown in Figure 29.58

Here Poisson::distribution(...) is a convenient shortcut generated automatically: any
model with only one random variable is automatically endowed with a distribution(...)
function taking as input the model’s parameters. The distribution(...) function re-
turns a simplified application programming interface (API) for models having only one ran-
dom variable. If that single random variable is of type RealVar (or IntVar), the returned
value of distribution(...) is of type RealDistribution (or IntDistribution).59 If the

58https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/
jss/others/PoissonPoissonMixtureExample.bl

59https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/RealDistribution.html,

https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/PoissonPoissonMixtureExample.bl
https://github.com/UBC-Stat-ML/JSSBlangCode/blob/master/reproduction_material/example/jss/others/PoissonPoissonMixtureExample.bl
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/RealDistribution.html
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x | lambda1 , lambda2 , pi
~ IntMixture (

pi ,
#[ Poisson :: distribution ( lambda1 ), Poisson :: distribution ( lambda2 )]

)

Figure 29: Poisson mixture model coded in Blang, PoissonPoissonMixtureExample.bl.

type of the single random variable is neither RealVar nor IntVar, the returned value of
distribution(...) is of the type Distribution.60

12. Inference
Blang efficiently samples from posterior distributions by detecting sparsity patterns in the
model, matching variable types with their associated roles in inference, then sample using
state-of-the-art Monte Carlo methods.
In the following sections, we detail intermediate steps in the process described above. We first
assume that a continuum of probability distributions is available. On one end of the spectrum,
we have the posterior distribution, and the prior on the other. The prior is a distribution
from which we can sample from assuming the model is in generative normal form. Then we
describe the technical details used to automatically construct this continuum of interpolating
probability distributions, along with invariant Markov chain kernels for each distribution in
the interpolation.

12.1. Inference algorithms

Blang currently focuses on two complementary inference algorithms: sequential change of
measure (SCM), and non-reversible parallel tempering (PT). SCM infers the exact poste-
rior distribution asymptotically in memory, while PT infers the exact posterior distribution
asymptotically in time. The former is an SMC algorithm and the latter a parallel MCMC
algorithm.
A core concept present in both algorithms is the use of an adaptive sequence of tempered
distributions extracted from a continuum interpolating from the prior to the posterior dis-
tribution. Through these tempering schemes, we are able to explore complex, multimodal
distributions without the need for automatic differentiation; as such, these techniques are
not limited to Euclidean spaces. For example, the default samplers for real and integer data
types are their respective slice samplers (Neal 2003),61 which when used in a naive MCMC
algorithm could perform poorly in highly correlated models. However in the context of SCM
or PT, it is frequently the case that simple MCMC algorithms perform better than using
specialized moves in a single chain (Ballnus, Hug, Hatz, Görlitz, Hasenauer, and Theis 2017).
Furthermore, due to the inherent characteristics of these algorithms, they are trivially paral-
lelized for efficient computing, and provide computation of model evidence at negligible cost.

https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/IntDistribution.html
60https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/Distribution.html
61More precisely, a doubling and shrinking procedure is used as an adaptive scheme, whose details and

validity are described and proved by Neal (2003).

https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/IntDistribution.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-dsl/blang/core/Distribution.html
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For these reasons, SCM and PT are good candidates for automatic inference on generalized
state spaces. These two algorithms can be used individually, but by default the SCM is
used to initialize PT. This combination is motivated by the fact that SCM appears to often
be better suited to quickly find a crude approximation. In particular SCM is able to find
configurations of positive probability even in the presence of deterministic constraints (i.e.,
configurations having zero posterior probability). However, to obtain high quality samples,
SCM may require a number of particles larger than what can be fitted in memory. PT on
the other hand can provide approximations of arbitrary high quality without asymptotically
infinite memory consumption.

Constructing a sequence of measures

Both SCM and PT inference algorithms require a continuum of measures. To retain theoretical
guarantees, we must ensure each measure in this sequence has a finite normalization constant.
To achieve this, we factorize our joint density into what we call likelihood li(x) and prior
pj(x) factors. Assuming a Blang model in generative normal form, the construction of such a
continuum of probability measures begins with an exhaustive unrolling of composite laws to
identify all atomic laws, or log factors. Each factor belongs to a model and as such each of its
dependencies can be classified as either corresponding to random or param. If its dependency
is random, we direct the corresponding edge in the factor graph as out-going. Otherwise, if
it is a param, we direct the edge as in-coming. Likelihood factors are then defined as factors
whose outgoing edges, if any, all connect to an observed variable; factors are classified as
priors otherwise.
Suppose we have factorized our posterior as follows

π(x) ∝
I∏

i=1
li(x)

J∏
j=1

pj(x),

where li(x), pj(x) denote likelihood and prior factors respectively. As opposed to raising the
product of likelihood and prior factors to some t ∈ [0, 1], which may not yield a probability
distribution, it is preferable to exponentiate the likelihood factors.
Additionally, it is common to have configurations of zero probability when performing infer-
ence over discrete combinatorial objects. In some scenarios, for example in pedigree analysis,
these zero-valued likelihood evaluations can create difficulties in building irreducible samplers,
thus invalidating convergence guarantees. We alleviate this restriction using the annealing
scheme shown below,

πt(x) = γt(x)
Zt

=

( ∏
i∈I [(li(x))t + I(li(x) = 0)ϵt]

)
p(x)

Zt
, (4)

where ϵt = exp(−10100t)I(t < 1), p(x) = ∏J
j=1 pj(x), and I(·) is the indicator function, i.e.,

I(·) is equal to 1.0 when the argument is true, and 0.0 otherwise. We use the convention 00 = 0
so that π0(x) = p(x). The conditions and effects of ϵt on the performance of algorithms have
yet to be explored and is part of our future work. By design, the interpolating chains have
a wide support (i.e., p(x) > 0 ⇒ πt(x) > 0 for t < 1), while maintaining the guarantee of



Journal of Statistical Software 61

having a finite normalization constant for all annealing parameters:∫
γt(x)dx =

∫
p(x)

∏
i∈I

[(li(x))t + I(li(x) = 0)ϵt]dx

≤
∑

K:K⊂I

ϵ
|I|−|K|
t

∫
p(x)(

∏
i∈K

li(x))tdx

=
∑

K:K⊂I

ϵ
|I|−|K|
t

∫
p(x)(

∏
i∈K

li(x))t[I(
∏
i∈K

li(x) ≥ 1) + I(
∏
i∈K

li(x) < 1)]dx

≤
∑

K:K⊂I

ϵ
|I|−|K|
t [

∫
p(x)

∏
i∈K

li(x)dx+
∫
p(x)dx]

< ∞

This proposed annealing scheme allows our sampler to traverse across multimodal distribu-
tions, preserve the correct marginal posterior distribution at room temperature (i.e., when
t = 1), and guarantee convergence of normalizing constant estimates.
In a given execution of the PT and SCM inference algorithms, the full continuum of distribu-
tions {πt : t ∈ [0, 1]} is only instantiated on a finite grid 0 = t0 < t1 < · · · < tN = 1, called an
annealing schedule. Since the performance of both PT and SCM are sensitive to the choice
of annealing schedules, they each use a specialized algorithm to automatically optimize the
annealing schedule (described in the next sections). To perform a continuous optimization
over (t1, t2, . . . , tN−1) with monotonicity constraints, the algorithms rely on the fact that the
discrete sequence of distributions is embedded in a continuum of distributions.

Sequential change of measure

Informally, Blang’s SCM inference engine initializes a population of particles from a prior
distribution, and iteratively perturbs and reweighs the particles. The number of particles used
is 1 000 by default and can be set using the --engine.nParticles option. More precisely,
SCM is a special case of the sequential Monte Carlo (SMC) sampler (Del Moral et al. 2006,
Section 3.3.2.3) combined with an adaptive tempering schedule described by Zhou et al. (2016)
(also called “annealed SMC”, e.g., in Wang, Wang, and Bouchard-Côté 2020). SMC samplers
are an extension or generalization of SMC methods, which allow for sampling from a sequence
of distributions defined on a fixed state space, as opposed to the more common SMC setup
(Doucet and Johansen 2011) consisting of product spaces of increasing dimensionality.
As described in Del Moral et al. (2006, Section 3.3.2.3) the proposals we use consist in
MCMC kernels targeting each of the intermediate distributions (see Section 12.7 for a detailed
description on their construction). Del Moral et al. (2006) also justify in this context the
incremental weight updates given by

wt(xt−1, xt) = γt(xt−1)
γt−1(xt−1) , (5)

where γt(x) is the numerator in the right-hand side of Equation 4. Initialization is done using
the prior sampler described in Section 12.6.
Due to the weight degeneracy problem reviewed in Doucet and Johansen (2011), a resam-
pling procedure is required. Resampling prevents the population of sample weights from
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Figure 30: SCM monitoring plots automatically created when SCM is used and the default
post-processing tool activated (--engine SCM --postProcessor DefaultPostProcessor).
Here we show examples for the Gaussian mixture model in Section 6, using 10000
particles. The adaptive resampling scheme based on ESS estimates is performed
by default for SCM. Left: ESS plotted against iterations, automatically created in
monitoringPlots/propagation-ess.pdf. Each “spike” observed in this plot correspond
to a resampling step taking place. When ESS falls beneath a predefined threshold, 0.5
here, particles are resampled to prevent weight degeneracy. This resampling procedure “re-
freshes” the relative ESS to 1.0. Right: The resulting adaptive annealing schedule, found in
monitoringPlots/propagation.pdf. The y-axis corresponds to annealing parameters, and
the x-axis to the iteration number.

collapsing into a point mass. However, resampling injects additional noise into the sampling
process. Motivated by the need to balance these two factors, we use a standard procedure
to adaptively determine when resampling should be performed. The effective sample size
(ESS) is computed at each iteration (Kong 1992). If the relative ESS – ESS divided by
population size – falls beneath a predetermined threshold, resampling is performed. Fig-
ure 30 (left) illustrates the resampling procedure’s effect on ESS. This threshold value de-
faults to 0.5 in Blang, and can be set, for example, to 0.4 using the command-line argument
--engine.resamplingESSThreshold 0.4. By default, the resampling scheme used is the
stratified sampling of Kitagawa (1996) (use --engine.resamplingScheme MULTINOMIAL for
multinomial resampling).
SMC samplers rely on a discrete set of interpolating distributions 0 = t1 < t2 < · · · < tN = 1.
As initially proposed in Jasra, Stephens, Doucet, and Tsagaris (2011) and improved in Zhou
et al. (2016), instead of building this sequence a priori, we construct it incrementally and adap-
tively. At each step the next annealing parameter is determined so as to cause a fixed decay
in the relative conditional ESS as defined in Zhou et al. (2016). Figure 30 (right) shows an
example of a resulting adaptive annealing schedule. Finding the next annealing parameter is a
simple univariate root finding problem. Since the weight update shown in Equation 5 does not
depend on xt, only the already available particles from the previous iteration, xt−1, the com-
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putational cost of the root finding problem is negligible. By default, the targeted decay is set
to 0.9999 and can be controlled via --engine.temperatureSchedule.threshold. Setting it
to a lower value will speed up computation at the cost of a less accurate posterior distribution
(and vice versa). One disadvantage of this adaptation scheme is that the running time of the
method is random and may be hard to predict a priori. If the user requires a prespecified num-
ber of iterations, adaptive construction of the sequence of distribution can be turned off, for
example to use a fixed number of 20 iterations and an equally spaced annealing schedule 0 =
t1 < t2 < · · · < t20 = 1, use --engine.temperatureSchedule FixedTemperatureSchedule
--engine.temperatureSchedule.nTemperatures 20. Custom mechanisms to control the
schedule can be added by implementing the interface TemperatureSchedule.62 If for ex-
ample the user implements their own algorithm in a class called MySchedule located in
package mypackage, to enable its use during inference, add the command line arguments
--engine.temperatureSchedule mypackage.MySchedule.
After SCM inference is performed, Blang performs one last round of resampling followed by 5
rounds of particle rejuvenation on each particle. This results in a set of equally weighted parti-
cles. The amount of rejuvenation to perform after the final resampling round can be controlled
via --engine.nFinalRejuvenations, for example use --engine.nFinalRejuvenations 10,
for 10 rejuvenation rounds.

Non-reversible parallel tempering

Blang incorporates a non-reversible, adaptive parallel tempering (PT) algorithm (Syed et al.
2019). PT (Geyer 1991) is an MCMC method that operates on product spaces. Informally, PT
runs N Markov chains in parallel, each targeting a distribution from a sequence of tempered
(i.e., annealed) distributions indexed by 0 ≤ t ≤ 1 (used when constructing a sequence of
measures). Each PT iteration consists of two phases: a local exploration phase taking place
within individual chains, and a communication phase taking place between chains.
In the local exploration step, for chains with t > 0, the state is updated via samplers or
MCMC kernels invariant with respect to the chain’s target distribution (the construction of
these kernels is detailed in Section 12.7). For the chain with t = 0, the local exploration
step consists in an independent draw from the prior distribution (the construction of the
independent sampler for the prior is detailed in Section 12.6). If the user requires using
MCMC samplers for t = 0 instead of prior sampling, the option --engine.usePriorSamples
false can be used.
In the communication phase, swaps between neighbor chains are proposed and accepted/re-
jected according to the Metropolis-Hastings ratio. Informally, this swapping procedure pro-
vides opportunities for states to traverse across modes, as the prior allows independent sam-
pling and hence a form of regeneration. Even when sampling from the prior is not possible,
annealing often yields MCMC kernels with better mixing rates.
In our implementation, both the exploration and communication phases are parallelized in
the number of parallel chains N (see Section 12.3 for details). However to leverage this
parallelism, following the theoretical analysis of Syed et al. (2019), special attention has been
devoted (1) to the details of how the swap mechanism is performed, and (2) to the tuning of
the annealing schedule t1, t2, . . . , tN−1 introduced in the last section.

62https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/engines/internals/schedules/
TemperatureSchedule.html

https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/engines/internals/schedules/TemperatureSchedule.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/engines/internals/schedules/TemperatureSchedule.html
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Figure 31: Visualization (cropped) of the chain swaps proposed while running non-reversible
PT (add --postProcessor.runPxviz true --postProcessor.boldTrajectory 1 to create
this visualization). The x-axis corresponds to PT iterations, and the y-axis corresponds to
different parallel chains, with the one at the top corresponding to the posterior distribution,
the one at the bottom, to the prior distribution, and those in between interpolating between
the two. When a swap is accepted (green line segments), two chains exchange their states,
denoted by crossing lines. When a swap is rejected we use red line segments. An index process
is obtained by considering a path formed by these line segments (one index process is shown
as a bold line for ease of interpretation). An annealed restart is defined as a path segment
within an index process which starts at the prior and ends at the posterior.

Point (1) is motivated by a sharp contrast between the performance of reversible and non-
reversible flavors of PT. Performance in the following discussion is based on the notion of
annealed restarts, defined along with the related notion of the index process in Figure 31.
We define PT performance as the fraction of iterations where an annealed restart is just
completed at the current iteration. This is called the restart rate, which we denote by τ , and
it is equivalent (up to an additive factor of 1) to the notion of round trip rate popular in the
PT literature (Katzgraber, Trebst, Huse, and Troyer 2006; Lingenheil, Denschlag, Mathias,
and Tavan 2009).
Previous theoretical work has focused on reversible PT where the groups of chains to swap
are selected at random. In the reversible regime, several lines of work (Rathore, Chopra, and
de Pablo 2005; Atchadé, Roberts, and Rosenthal 2011) have demonstrated that even when a
high number of cores is available, one still has to ensure that N , and hence the number of
cores leveraged, is not too large. More precisely, the performance of reversible PT collapses as
N increases, even when communication and local exploration are fully parallel. For example
the results in Atchadé et al. (2011) imply that τrev,N → 0 as N → ∞. Surprisingly, this
performance collapse disappears when a non-reversible flavor of PT is used: Syed et al. (2019)
identified conditions where τnon-rev,N → c as N → ∞; the constant c > 0 (model-dependent) is
discussed further below. Even more surprising is that algorithmically, the distinction needed
to make PT non-reversible is minimal: it is simply the use of a deterministic alternation of
two specific types of swap kernels, those swapping i, i + 1 with i even, followed by similar
swaps with i odd. This algorithm can be traced back to Okabe, Kawata, Okamoto, and
Mikami (2001), however, only recently its non-reversible dynamics have been identified and



Journal of Statistical Software 65

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ●

● ● ● ● ●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

25

0.00 0.25 0.50 0.75 1.00
beta

la
m

bd
aI

ns
ta

nt
an

eo
us

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
beta

cu
m

ul
at

iv
eL

am
bd

a

0.0

2.5

5.0

7.5

10.0

12.5

round

0.25

0.50

0.75

1.00

0 5 10
round

sw
ap

S
ta

tis
tic

s

0

10

20

30

chain

Figure 32: Left: final estimate of the local communication barrier λ̂ versus the annealing
parameter t (labeled “beta” in the Blang output). The spiking phenomenon around t = 0.9
is indicative of a phase transition. This corresponds to the mixture indicator variables going
from a disorganized configuration (the side of the peak at t = 0.9 closer to the prior on
the left) to a clustered configuration (the side of the peak closer to the posterior). Middle:
estimates of the cumulative communication barrier, Λ̂(t), with each color corresponding to a
different iterative round of the annealing schedule optimization algorithm. Right: here each
line (color) is one of the N chains, and the line tracks the average acceptance probability
(ordinate) between that chain and its neighbor for each round of the schedule optimization
algorithm (abscissa). In contrast to reversible PT, NRPT does not need to restrict swap
acceptance probability to low values such as the 23% acceptance rule of Atchadé et al. (2011).

used to prove the existence of a qualitative gap between the reversible and non-reversible
flavors of PT. The gap can be established both non-asymptotically (τrev,N < τnon-rev,N for all
N), and also asymptotically as N → ∞, in which case the performance of non-reversible PT,
τnon-rev,N , is furthermore guaranteed to be monotonically increasing for N large enough.
More importantly, non-reversibility opens the door for highly parallel algorithms to optimize
over the annealing schedule, hence addressing point (2) above. By default, Blang’s PT engine
uses the non-reversible schedule optimization from (Syed et al. 2019, labeled NRPT hence-
forth). In contrast, at the time of writing, mainstream probabilistic programming languages
either lack support for parallel tempering (Plummer 2003; Lunn et al. 2012; Salvatier et al.
2016; Carpenter et al. 2017), or require manual input of the annealing parameters (Foreman-
Mackey, Hogg, Lang, and Goodman 2013).
To outline how the NRPT algorithm works, we first outline the asymptotic distribution of
a single index process (for example, the bold line in Figure 31) as N → ∞. While for
reversible PT this distribution converges to a diffusion, for non-reversible PT, it converges
to a piecewise-deterministic Markov process (PDMP). See Davis (1993) for background on
PDMPs. The rate parameter of this limiting PDMP, λ, a positive function taking as input
an annealing parameter t ∈ [0, 1], can be interpreted as being proportional to the expected
rejection rate for a swap between πt and πt+ϵ. See Figure 32 (left) for an example of an
estimate λ̂ from the model in Section 6. Moreover, the constant c introduced earlier as
the asymptotic non-reversible performance, τnon-rev,N → c can be written as c = (2 + Λ)−1,
where Λ(t) =

∫ t
0 λ(t′) dt′. We call λ, Λ(t), and Λ = Λ(1) the local, cumulative and global

communication barriers respectively.
Importantly, all three communication barriers can be estimated from the MCMC output, and
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used as the basis for tuning PT as described in Syed et al. (2019). First, Λ can be used
as a measure of the difficulty of PT-based inference for a given model: this is supported by
its relation with the model-specific constant c described earlier. We recommend to use a
number of chains proportional to Λ. Using at least 2Λ appears to provide a good starting
point empirically. Second, NRPT uses Λ(t) to optimize the annealing parameters using the
following strategy. The algorithm iteratively estimates Λ̂(t), using a simple and asymptot-
ically consistent rule Λ̂(ti) = ∑i

j=1 r̂
(j−1,j), and Λ̂(·) interpolated using a monotone cubic

spline between the ti’s, where {ti} are annealing parameters from the previous iterations,
and r̂(j−1,j) is the empirical swap rejection rate, also obtained from the previous iteration.
The algorithm then computes univariate quantile of t 7→ Λ̂(t)/Λ̂(1) to update the annealing
schedule. This is repeated using a doubling scheme, where the first round uses 1 iteration
to estimate Λ̂(t), followed by annealing parameters update, the second round uses 2 itera-
tions based on the updated schedule, followed by an update of the annealing parameters,
then 4, 8, etc. See Figure 32 (middle) for an example of how estimates of Λ̂ progress as the
number of rounds increases. As a byproduct of the NRPT algorithm we obtain a burn-in
mechanism: by default, all post-processing uses only the samples produced by the last op-
timization round which is equivalent to a 50% burn-in. The only exception is for the trace
plot, which is shown for both the whole MCMC trace in the output folder tracePlotsFull,
and for the post burn-in phase, tracePlots. The default of 50% burn-in can be customized
via --postProcessor.burnInFraction.
Alternative mechanisms can be used to control the annealing parameters. By default, the ini-
tial annealing schedule is uniform, other initial values can be used, see --engine PT --help
for various options. Optimization of the annealing parameters can be disabled with the ar-
gument --engine.adaptFraction 0.0. Custom mechanisms to control the initial schedule
can be added by the user by implementing the interface TemperatureLadder.63 If for exam-
ple the user implements their own algorithm in a class called MyLadder located in package
mypackage, to enable it, use --engine.ladder mypackage.MyLadder.
One tuning parameter that can be used to speed-up the execution of NRPT is the expected
number of times each local exploration kernel should be used between two rounds of swap
attempts, --engine.nPassesPerScan (fractional values are accepted). By default, this is
set to 3, so that a theoretical assumption called effective local exploration (ELE, Syed et al.
2019), is well approximated. However, we observed that performance was robust to this
choice so if the local exploration kernels are reasonably efficient, lower values will lead to
similar behavior of the index processes for a lower computational budget. Conversely, if the
local exploration kernels perform very poorly, it may be useful to explore higher values for
the argument --engine.nPassesPerScan.
If the hard-drive space required to store the samples produced by PT becomes prohibitive,
one option is to enable thinning by providing an input --engine.thinning greater than one.
For example, --engine.thinning 2 will store samples only once every two PT iterations. An
alternative (available for all engines), is to compress the samples in .gz format, which is en-
abled using --experimentConfigs.tabularWriter.compressed true. All post-processing
is compatible with the compressed samples format.
Initialization of PT is by default performed by first running SCM using an annealing schedule

63https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/engines/internals/ladders/
TemperatureLadder.html

https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/engines/internals/ladders/TemperatureLadder.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/engines/internals/ladders/TemperatureLadder.html
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containing all annealing parameters in PT’s initial schedule. The SCM initialization can
be configured using the same arguments as those described when discussing the sequential
change of measure but with the prefix engine.scmInit. For example, to increase the number
of particles (set to 100 for the initialization run), use --engine.scmInit.nParticles 200.

Other inference engines
When a model is not in generative normal form, the PT and SCM engines cannot be used. In
such case, the user can still run a basic, single chain MCMC via --engine MCMC. This option
is essentially a shortcut for setting the PT engine to use a single chain, to avoid using SCM
for initialization, and to avoid other checks that assume a generative normal form. The PT
command line arguments from non-reversible parallel tempering that are relevant to single-
chain MCMC can still be used, in particular --engine.nScans and --engine.thinning.
Another convenient shortcut is --engine AIS which uses SCM but with resampling disabled.
This is known as the annealed importance sampling algorithm (AIS, Neal 2001). The SCM
arguments relevant to AIS can still be used with this engine, namely --engine.nParticles,
--engine.nFinalRejuvenation, and --engine.temperatureSchedule.threshold.
In cases where the user would like to sample independent and identically distributed real-
izations from a model where no observation is present, the engine --engine Forward (for
forward sampling) with option --engine.nSamples 1 can be used.
When all random variables in a small model are discrete, the argument --engine Exact will
enumerate all possible scenarios. Note that the DefaultPostprocessor should not be used
to analyze the output of the exact engine. This is because the output in the folder samples
has a different interpretation than with the other engines: instead of representing equally
weighted samples, they represent weighted samples with weight indicated in a row called
logProbability.
Finally, the inference engine can be customized. This is achieved by implementing the inter-
face PosteriorInferenceEngine.64 If for example the user implements their own algorithm
in a class called MyEngine located in package mypackage, to enable its use during inference,
add the command line arguments --engine mypackage.MyEngine.

12.2. Pseudo-random generator
The current pseudo-random generator is the Mersenne Twister generator (Matsumoto and
Nishimura 1998) as implemented in the MathCommons package. By default, the seed 1 is
used. For inference engines based on randomized algorithms (all current algorithms except
Exact), this can be changed using the command line argument --engine.random followed
by an integer.

12.3. Parallelization
Due to the nature of PT and SCM algorithms, parallelization can be used to obtain significant
performance improvements. In both PT and SCM, transition MCMC kernels are applied in
parallel across particles/chains. In addition to parallelization of transition kernels, PT also
performs its swap operations in parallel.

64https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/engines/internals/
PosteriorInferenceEngine.html
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Blang uses lightweight threads to parallelize these operations (Friesen 2015). Specifically, it
uses the algorithm described in Leiserson, Schardl, and Sukha (2012) as implemented in Steele
and Lea (2013). This implementation allows each chain to pertain to its own random stream,
consequently avoiding any blocking between threads. Furthermore, this implementation im-
plies any numerical output will not be altered by the number of threads utilized given fixed
random seeds.
For controlling multi-threading, use --engine.nThreads Max to take advantage of as many
threads as there are cores in the host machine, --engine.nThreads Dynamic to dynami-
cally allocate threads based on the overall system usage (the default behavior, which ensures
analysts can smoothly carry out other tasks while inference is running in the background),
--engine.nThreads Single to force single-thread mode, and --engine.nThreads Fixed
--engine.nThreads.number 2 to fix a specific number of threads to use.

12.4. Marginal likelihood computation
Standard Bayesian model selection requires computing the marginal likelihood, also known
as the evidence. The marginal likelihood is conceptually simple: it is the probability or the
density of the observed data. However computing or approximating this single scalar is often
challenging. Fortunately, both PT and SCM automatically compute the marginal likelihood
with no extra computational cost.
Our PT engine supports estimation of the marginal likelihood through two methods: thermo-
dynamic integration (Ogata 1989), and the stepping stone estimator (Xie, Lewis, Fan, Kuo,
and Chen 2011). For models with hard constraints (i.e., models whose likelihood is equal to
zero for particular configurations of states proposed by the sampling algorithm), the technical
conditions underlying thermodynamic integration may not be satisfied, and that estimator
is automatically omitted in such cases. The stepping stone estimator can still be used in
these cases. In SCM, the evidence comes as a by-product of the weights computed by the
algorithm, see, e.g., Del Moral et al. (2006).
In contrast to Blang, other mainstream probabilistic programming languages require addi-
tional packages and external dependencies to approximate the marginal likelihood. For ex-
ample in Stan, one would require additional post-processing with bridge sampling (Meng and
Wong 1996) using packages such as bridgesampling (Gronau and Singmann 2021; Gronau,
Singmann, and Wagenmakers 2020).

12.5. Diagnostics
We summarize here some diagnostic strategies that can be used to assess the quality of
the posterior distribution approximation. With the PT inference engine, the key diag-
nostics are the ESS estimates (Section 4) and the number of annealed restarts (see Fig-
ure 31 for the definition, and monitoring/actualTemperedRestarts.csv for the estimates).
Each annealed restart incorporates a unique independent draw from the prior chain suc-
cessfully propagated to the posterior chain. This can be complemented with inspection
of the trace plots (Section 4). Finally, another strategy is to monitor the marginal like-
lihood: a separate estimate is provided for each adaptation round in the PT engine (in
monitoring/logNormalizationContantProgress.csv), so its convergence can be readily
monitored, and moreover one can check the agreement of PT’s estimate with the orthogonal
marginal likelihood estimator used by SCM (either based on the automatic SCM initialization,
or from a separate run; see logNormalizationEstimate.csv).
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12.6. Construction of prior samplers
Consider the sequence of distribution in Equation 4 at t = 0, where we recover the prior
distribution p(x). When a model is in generative normal form (Section 5.7), Blang automati-
cally constructs an efficient algorithm to sample from the prior distribution p(x). Briefly, the
normal form property guarantees that we can orient the factor graph over the latent variables
into a directed graphical model. The generative normal form property enables the enumera-
tion of forward samplers provided by the generate blocks. Finally, as a preprocessing step,
we order these generate blocks according to a linearization of the directed graphical model.

12.7. Construction of invariant samplers
We first describe how a Blang model m is transformed into an efficient representation aware
of m’s sparsity patterns. The transformed representation is an instance of SampledModel,65

a mutable object keeping track of the state space and offering methods to: (1) change the
annealing parameter of the model, (2) apply a transition kernel in place targeting the cur-
rent annealing parameter, (3) perform forward simulation in place, (4) obtain the joint log
density of the current configuration, and (5) duplicate the state via a deep cloning library
(Appendix C).

Preprocessing
The process of translating m into a SampledModel begins with the instantiation of model
variables. After this is done, a list l of factors is recursively constructed. That is, we recursively
search through m for sub-models, and terminate when we have identified and added all atomic
laws to l.
The next phase of initialization consists of building an accessibility graph between all objects
in a model,66 defined as follows: the set of vertices is the set of objects defined by a model,
starting at the root model, and of the constituents of these objects recursively. Constituents
are fields in the case of objects and integer indices in the case of arrays. Constituents can
also be customized, for example, in order to index entries of matrices. The directed edges of
the accessibility graph connect objects to their constituents, and constituents to the object
they resolve to, if any. We say that object o2 is accessible from o1 if there is a directed path
from o1 to o2 in the accessibility graph.
Once the accessibility graph has been constructed, the latent variables in m are extracted
from the vertex set of the accessibility graph. These variables are the intersection of objects
of a type annotated with @Samplers and objects that are mutable, or have accessible mu-
table children. Mutability here corresponds to the class having fields that are either arrays
or that are non-final (the latter being the Java terminology, or equivalently, in Xtend, fields
not marked by val). In other words, latent variables are objects that have a designated
sampler, and are or have access to non-final fields. Immutability is therefore the main mech-
anism used to define observed (fixed) values. Additionally, we can mark indices in matrices
and arrays as observed. This is accomplished by the Observations object.67 For exam-
ple, observationsObject.markAsObserved(mtx.getRealVar(i, j)) marks entry (i, j) of

65https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/runtime/SampledModel.html
66Here objects refer to the same objects as defined in Java, i.e., dynamically allocated class instances or

arrays.
67https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/runtime/Observations.html
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matrix mtx as observed. In scenarios where objects or fields are accessible but unused in
factors, the exploration of such objects and fields can be skipped. This can be handled in the
construction of the accessibility graph by using the annotation @SkipDependency. With our
accessibility graph constructed and latent variables identified, we can now exploit the model’s
sparsity patterns by constructing a factor graph.

Exploiting sparsity

Samplers can be made more efficient by avoiding unnecessary computation of model compo-
nents; we exploit a model’s sparsity pattern by building factor graphs via linear time graph
algorithms on our accessibility graph.
Given a latent variable v and factor f , we can determine whether the application of a sampling
operator on v can change the numerical value of the factor f . This is accomplished by
assessing v and f ’s co-accessibility. Two objects o1 and o2 are said to be co-accessible if there
is a mutable object (as defined previously) o3 such that o3 is accessible from both o1 and o2.
Through this awareness of sparsity patterns, we can now perform sampling operations on
variables without computing every factor involved in the model. The cost of the entire
preprocessing procedure has negligible cost in comparison with the performance to be gained
from its implications.
For a concrete example, we refer readers to the Markov chain example (Section 11.2).

Matching transition kernels (samplers)

Once sparsity patterns have been identified, samplers are matched to latent variables through
the @Samplers annotation. We have seen examples of this annotation in the permutation
example of Section 9. Here we provide more details on this process.
Given a certain model we would like to sample from, the first step is to identify which types
of samplers are needed. To do so, recall that each latent variable is by definition of a type
annotated with the @Samplers annotation. Now the @Samplers annotation is required to
include as arguments a list of types responsible for sampling that type. For example, the class
DenseSimplex is annotated with @Samplers(SimplexSampler).68 Repeating this process for
each type of latent variable, this gives us a pool of sampler types. This pool of sampler types
is summarized at the top of the standard output when sampling is performed, for example,

2 samplers constructed with following prototypes:
RealScalar sampled via: [RealSliceSampler]
IntScalar sampled via: [IntSliceSampler]

The next step is to attempt to instantiate one Sampler object for each latent variable. We will
walk through this process based on the example of instantiating a SimplexSampler, shown
in Figure 33.69

68It is also possible to add or exclude samplers from the command line, using the options
--samplers.additional and --samplers.excluded respectively, followed by fully qualified Java types point-
ing to sampler implementations. If the user wants to only rely on the set of samplers specified in the command
line and not the ones obtained from the annotation, the option --useAnnotation false can be used.

69https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/
SimplexSampler.xtend

https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/SimplexSampler.xtend
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...
class SimplexSampler implements Sampler {

@SampledVariable DenseSimplex simplex
@ConnectedFactor List < LogScaleFactor > numericFactors
@ConnectedFactor Constrained constrained

override void execute ( Random rand) { ... }
override boolean setup( SamplerBuilderContext context ) { ... }

}

Figure 33: Snippet of the simplex sampler, SimplexSampler.xtend.

At this point of the process, we have on the one hand a specific instance of a simplex ran-
dom variable s within a factor graph, and on the other hand, the SimplexSampler type.
We first look at all the factors connected to s that can be assigned to fields annotated
by @ConnectedFactor in SimplexSampler. For example, if any number of factors of type
LogScaleFactor are encountered, it can be assigned by adding it to the list numericFactors.
Similarly, if s is connected to no more than one Constrained factor, that factor can be as-
signed to the field constrained. If all neighbors of s can be matched in this fashion, then all
these annotated fields will be automatically populated by the neighbor factors of s. If this is
not the case, i.e., if some neighbor factor cannot be assigned to one of the fields marked by
@ConnectedFactor, then the current sampler type will not be matched with s.
Provided we have a match, then the field simplex annotated with @SampledVariable is
automatically initialized with the sampled variable. After this is done, the setup method is
invoked to (1) perform any required pre-computation, and (2) to provide a chance to reject
matching the sampler based on more complex criteria (for example, if deciding whether it is
possible for this sampler to handle sampling s based on information only available at runtime;
the return value of setup determines if the sampler will be instantiated in the given context).
The function setup is provided as input an object of type SamplerBuilderContext which
makes it possible to use more fine grain information on the factor graph.70 For example, if
s is itself composed of several objects s1 and s2 to be sampled one after the other, it would
be possible to cache a more precise decomposition of the list of factors connected to each by
using context.connectedFactors(new ObjectNode(s1)).
This completes the setup phase. Next, during Monte Carlo sampling, the variable being
sampled is updated in place through the invocation of execute.
Going back to the simplex example, the Constrained factor is used here to indicate that the
sampler being constructed is aware of the constraints posed by simplex variables.

Computational details
All the programs in this paper were run using blangSDK 2.13.1 on a Mac OS X version
10.14.5. The device used is a MacBook Pro (15-inch, 2018) with a 2.2 GHz 6-core Intel Core
i7 processor and a 2.2 GHz Radeon Pro 555X graphics card and 32 GB of 2400 MHz DDR4
memory.

70https://www.stat.ubc.ca/~bouchard/blang/javadoc-sdk/blang/mcmc/internals/
SamplerBuilderContext.html
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A. Advanced tutorials

A.1. Inference on non-standard data structures via third-party libraries

Consider an inference problem where the data structure or parameter of interest is a phylo-
genetic tree. A phylogenetic tree is a branching process encoding evolutionary relationships
between organisms. The following example illustrates how to perform inference on a phylo-
genetic tree model given sequence alignment data, using a third-party library.
The Blang language itself does not contain tree-valued random variables. However, the lan-
guage allows creating custom types of random variables. Moreover, these custom types can
be packaged, published and imported.
First, we create a file called dependencies.txt at the root of the project directory. Each line
in dependencies.txt encodes a versioned third-party library to be imported (along with its
transitive set of dependencies). Here our model uses an existing Blang package called conifer
providing phylogenetic-centric data types (Zhao, Cumberworth, Wang, Gsponer, de Freitas,
and Bouchard-Côté 2015).71 Therefore, the contents for dependencies.txt would be given
by the following.

com.github.UBC-Stat-ML:conifer:2.1.3

We encode the Blang model in PhylogeneticTree.bl, using the imported data type in Fig-
ure 34. In the first block of code, unobserved variables of the type RealVar and IntVar are
declared using the functions latentReal() and latentInt().72 This is no different from our
previous examples. In the second block, NonClockTreePrior and UnrootedTreeLikelihood
are themselves Blang models defined in the imported conifer package. NonClockTreePrior
accepts a distribution as an argument, in the example an XExpression is used to pass in a
Gamma distribution directly without the need to declare another variable in the model.
To run PhylogeneticTree we enter the following in the CLI:

$ git clone https://github.com/UBC-Stat-ML/JSSBlangCode.git
$ cd JSSBlangCode/reproduction_material/example
$ blang --model jss.phylo.PhylogeneticTree \
> --model.observations.file data/primates.fasta \
> --model.observations.encoding DNA

Preprocess {
...
Initialization {

...
} [ ... ]

} [ ... ]
Inference {

...
Round(9/9) {

71https://github.com/UBC-Stat-ML/conifer/tree/master/src/main/java/conifer
72A summary of the most commonly used functions are listed in Figures 10 and 11.

https://github.com/UBC-Stat-ML/conifer/tree/master/src/main/java/conifer
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package demo
import conifer .*
import static conifer .Utils .*

model PhylogeneticTree {

random RealVar shape ?: latentReal ()
random RealVar rate ?: latentReal ()
random SequenceAlignment observations
param EvolutionaryModel evoModel ?: kimura ( observations . nSites )

random UnrootedTree tree ?: unrootedTree ( observations . observedTreeNodes )

laws {
shape ~ Exponential (1.0)
rate ~ Exponential (1.0)
tree | shape , rate ~ NonClockTreePrior (Gamma. distribution (shape , rate))
observations | tree , evoModel ~ UnrootedTreeLikelihood (tree , evoModel )

}
}

Figure 34: Phylogenetic tree model programmed in Blang, PhylogeneticTree.bl.

...
} [ ... ]

} [ ... ]
Postprocess {
...

} [ ... ]
executionMilliseconds : ...
outputFolder :./JSSBlangCode/.../results/all/2019-06-18-09-42-15-sP.exec

Here --model.observations.file specifies the data path, this is the standard Blang input
method. --model.observations.encoding is a model-specific option to parse our data,
provided by the third-party library. The usual outputs can be found in the results directory.
On the whole, to use third-party libraries or packages (not necessarily restricted to Blang),
users just need to specify the dependencies in dependencies.txt, and include import state-
ments as needed. Running the model can be done via the usual CLI. Inputs follow the same
syntax, unless otherwise instructed by the third-party library (i.e., custom parsers). Outputs
are also placed in the usual directories.

A.2. Spike and slab classification

In this example, we focus on the implementation of a non-standard data type to handle a
spike and slab model (Mitchell and Beauchamp 1988). The spike and slab model is a mixture
of prior distributions commonly used for coefficients in a regression model. The non-standard
data type SpikedRealVar is Blang’s representation of the type of the coefficients in a spike and
slab model. The file SpikedRealVar.xtend shown in Figure 35 contains the implementation
of the data type SpikedRealVar using Xtend.
Because we want to use RealVar and IntVar types in our SpikedRealVar type (Xtend), we
require the import statements of core Blang types, as the usual automatic imports are only
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package jss.glms

import blang.core. RealVar
import blang.core. IntVar
import blang.types. StaticUtils

class SpikedRealVar implements RealVar {
public val IntVar selected = StaticUtils :: latentInt ()
public val RealVar continuousPart = StaticUtils :: latentReal ()

override doubleValue () {
if ( selected . intValue < 0 || selected . intValue > 1)

StaticUtils :: invalidParameter ()
if ( selected . intValue == 0) return 0.0
else return continuousPart . doubleValue

}
override toString () { "" + doubleValue }

}

Figure 35: Spiked real variable programmed in Xtend, SpikedRealVar.xtend.

for Blang (.bl) files. We declare its member variables, selected and continuous, as IntVar
and RealVar. These variables will encode the spike and slab component values for each
explanatory variable. Because these members are random, their values are initialized using
latentInt() and latentReal(). We override RealVar()’s getter method doubleValue()
to return the regression coefficient if the explanatory variable is selected.
We can now use this custom data type to build a simple classification model, this time using
Blang. The code in Figure 36 is contained in SpikeSlabClassification.bl.
In the above model, the random variable parameters is indexed by instances and features.
This relationship is encoded using built-in types Plated and Plate variables; where a Plated
variable is indexed by one or more Plate variable. Hence, the random variable parameters is
of type Plated<SpikedRealVar>, and instances and features are of type Plate<String>.
Plate and Plated variables are detailed in Section 10.4. Note this is not the only way to
implement a spike and slab model. For instance, a user could define a distribution and sampler
for the SpikedRealVar type itself. This example merely illustrates a minimal implementation
that takes advantage of Blang’s preexisting types, distributions, and samplers.
To perform inference on the model SpikeSlabClassification, we call the following using
the CLI:

$ git clone https://github.com/UBC-Stat-ML/JSSBlangCode.git
$ cd JSSBlangCode/reproduction_material/example
$ blang --model jss.glms.SpikeSlabClassification \
> --model.data data/titanic/titanic-covariates.csv \
> --model.instances.name Name \
> --model.instances.maxSize 200 \
> --model.labels.dataSource data/titanic/titanic.csv \
> --model.labels.name Survived \
> --engine PT \
> --engine.nChains 20 \
> --engine.nScans 10000 \
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package glms

model SpikeSlabClassification {

param GlobalDataSource data
random RealVar activeProbability ?: latentReal
random RealVar sigma ?: latentReal
random RealVar intercept ?: latentReal

param Plate <String > instances , features
param Plated <Double > covariates
random Plated <IntVar > labels
random Plated < SpikedRealVar > parameters

laws {
for (Index <String > instance : instances . indices ) {

labels .get( instance ) | intercept ,
DotProduct dotProduct
= DotProduct .of(features , parameters , covariates .slice( instance ))

~ Bernoulli ( logistic ( intercept + dotProduct . compute ))
}

for (Index <String > feature : features . indices ) {
parameters .get( feature ). selected | activeProbability

~ Bernoulli ( activeProbability )
parameters .get( feature ). continuousPart | sigma

~ StudentT (1.0 , 0.0, sigma)
}

intercept | sigma ~ StudentT (1.0 , 0.0, sigma)
activeProbability ~ ContinuousUniform (0, 1)
sigma ~ Exponential (1.0)

}
}

Figure 36: Spike and slab model programmed in Blang, SpikeAndSlabClassification.bl.

> --postProcessor DefaultPostProcessor

Preprocess {
...

Initialization {
...

} [ ... ]
} [ ... ]
Inference {

...
Round(9/9) {

...
} [ ... ]

} [ ... ]
Postprocess {

Post-processing activeProbability
Post-processing allLogDensities
Post-processing energy
Post-processing intercept
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index features mean sd min median max HDI.lower HDI.upper
1 Age −0.02 0.02 −0.10 −0.02 0.01 −0.06 0
2 child 1.10 1.05 −1.10 0.96 5.23 −0.14 2.79
3 Fare 0.00 0.00 −0.02 0 0.02 0 0
4 female 3.16 0.44 1.43 3.15 4.72 2.40 3.85
5 Par..Aboard 0.01 0.13 −0.80 0 0.89 −0.21 0.26
6 Pclass −0.51 0.29 −1.62 −0.52 0.16 −0.87 0
7 Sib..Aboard −0.71 0.27 −1.90 −0.70 0.02 −1.15 −0.29

Table 4: Summary statistics for SpikeSlabClassification model’s parameters. Here 0.00
values are truncated representation of small values, and 0s denote exact 0 values as induced
by the “spike” part of the model.

Post-processing logDensity
Post-processing parameters
Post-processing sigma
MC diagnostics

} [ ... ]
executionMilliseconds : ...
outputFolder :./JSSBlangCode/.../results/all/2019-06-18-10-05-29-ut.exec

The arguments --model.data and --model.labels.dataSource specify the data source,
--model.labels.name and --model.instances.name specify the column names that labels
and instances correspond to, and --model.instances.maxSize indicates the maximum
size of the variable. The --postProcessor command creates additional summary statistics,
posterior plots, trace plots, monitoring plots, and estimates of effective sample sizes in addition
to the default outputs.
Figure 37 shows a subset of automatically post-processed trace plots. Summary statistics for
SpikeSlabClassification model’s parameters are shown in Table 4.

B. Internal architecture
This section documents the high-level implementation decisions and trade-offs involved in the
language construction. They may be skipped at first reading.

B.1. Language infrastructure

Blang is developed using Xtext, a mature framework for programming language design sup-
ported by the Eclipse Foundation and TypeFox. Thanks to the Xtext infrastructure, Blang
incorporates a feature set comparable to many modern full-fledged multi-paradigm language:
functional, generic and object programming, static typing. Blang also automatically inher-
its state-of-the-art language development tools including a graphical integrated development
environment (IDE) which leverages static types to provide insight into large Blang projects.
The IDE also has a full-feature debugger, and plug-ins have been tested to perform profiling
and code coverage analysis.
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Figure 37: Facets of trace plots, produced by the default post-processor, for a subset of
random variables in the spike and slab model. Note this is a truncated preview of the full set
of trace plots, thus some axis labels and titles are not shown. For all plots, the x-axis indexes
iteration. Left: the coefficients (y-axis) visit zero with positive probability as expected. Right:
log densities (y-axis) for two of the 20 tempered chains used in PT.

B.2. Choice of compilation target

Under the hood, Blang is compiled into Java, which in turn is compiled into Java Virtual
Machine (JVM) bytecode. This transpilation step does not have marked effect on amortized
compilation time since we use compilers supporting incremental compilation.
This is the default model in Xtext, which, in addition to greatly simplifying Xtext development
by using most of the provided default behavior, has for the user’s perspective two advantages
related to performance and production deployment. First, code running on modern JVM
is fast. For example, on the leading crowd-sourced language performance benchmark,73 as
of June 2019, the geometric mean performance of Java is lower than C++, but higher than
Julia (Bezanson, Edelman, Karpinski, and Shah 2017), which itself outperforms the more
common statistical computing choices such as R and Python by an order of magnitude or
more. The performance gains of advanced compilers such as Java and Julia over R and
Python are especially important when dealing with combinatorial spaces where vectorization
is generally not possible. Other performance advantages include the JVM’s high-performance
multi-threading capacity and garbage collection algorithms, which greatly facilitated the de-
velopment of advanced Monte Carlo algorithms, for example for the parallel computation and
memory management of particle genealogies. The second advantage is related to production
deployment. Java is currently the most used language according to the TIOBE index as of
June 2019, and this state may ease deployment of Blang software into existing production
environments.
An often cited downside of using Java is its verbosity. In our context, one specific concern is
that more boilerplate code is typically needed to access high-performance computing libraries

73https://benchmarksgame-team.pages.debian.net/benchmarksgame/which-programs-are-fastest.
html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/which-programs-are-fastest.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/which-programs-are-fastest.html
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such as linear algebra libraries or random number generators. Fortunately, Blang and Xtend
avoid the key issues that make Java code verbose: checked exception, bad default behavior
for constructor/accessors, and redundant type declaration. This brings Blang and Xtend code
to a length similar to even non-statically typed language while preserving the advantages
of the static type system. We use Blang and Xtend advanced language features combined
with allowed operator overloading to wrap existing dense and sparse matrix libraries into
xlinear, a new linear algebra library written in Xtend, which provides succinct linear algebra
expressions to Blang. Similarly, we wrap existing random generation libraries into convenient
Xtend extension methods.

B.3. Choice of sampler state representation

The state of the sampler is modified in place. A priori, this choice appears in conflict
with a popular doctrine in software engineering which is to avoid mutability and instead
use functional-style idioms on immutable data structures. While we agree these functional
patterns are often tremendously helpful, in the context of our samples’ state representation,
we found mutable data structures more useful for three reasons. First, the way we precom-
pute a factor graph for efficient inference, via scoping analysis, assumes that certain references
in the object graph stay invariant. These invariant objects allow us to gain information on
the scope and hence dependencies. With functional style programming, we would trade im-
mutability of the values into more mutability of the references making this scoping analysis
complex. Second, since the state objects are assembled and used in a completely automated
way (via Java reflection), the user simply does not face the traps of mutable data structures in
this specific context. Third, there are computational complexity advantages to using mutable
data structures. For example, accessing or modifying entries in arrays has a cost of O(1)
(mutation) instead of O(logn) (copy-on-write) (Rodeh 2008).

C. Library dependencies
Blang’s standard library uses its own language, and as such the majority of the dependencies
were developed for Blang, and are handled automatically through Maven and Gradle (https:
//gradle.org/). Aside from libraries developed for Blang, briefj, inits, bayonet, rejfree, binc,
xlinear, and pxviz,74 the language depends on three additional, external libraries: Cloning,75

JGraphT (Michail, Kinable, Naveh, and Sichi 2020),76 and Xbase (Efftinge et al. 2013). For
users who require automatic post-processors, R with packages dplyr and ggplot2 is required.
Table 5 summarizes each of the aforementioned packages, while the remainder of this section
expands on a select few that have been referenced earlier in the paper.77

C.1. bayonet

The bayonet library (https://github.com/UBC-Stat-ML/bayonet) contains utilities for per-
forming probabilistic inference. Blang uses bayonet.distribution.Random as a replacement for

74All of which are hosted on https://github.com/UBC-Stat-ML/.
75https://mvnrepository.com/artifact/uk.com.robust-it/cloning/1.9.6
76https://mvnrepository.com/artifact/org.jgrapht/jgrapht-core/0.9.0
77An exhaustive list of dependencies used by the blangSDK package and their versions can be obtained by

typing ./gradlew dependencies from the root of the blangSDK directory.

https://gradle.org/
https://gradle.org/
https://github.com/UBC-Stat-ML/bayonet
https://github.com/UBC-Stat-ML/
https://mvnrepository.com/artifact/uk.com.robust-it/cloning/1.9.6
https://mvnrepository.com/artifact/org.jgrapht/jgrapht-core/0.9.0
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Library Description
briefj Utilities for writing succinct Java code.
inits A framework to organize inputs and outputs of scientific simulations.
bayonet Various low-level utilities for probabilistic inference.
binc An interface for calling binary programs from Java applications.
xlinear Linear algebra package for Xtend and Java.
pxviz A visualization library.
Cloning Deep cloning library for Java.
JGraphT Graph theory data structures and algorithms for optimizing samplers.
MathCommons The Apache Commons Mathematics Library.
Xbase Used as the base language for the DSL.

Table 5: A summary of library dependencies (automatically downloaded during installation,
along with the transitive closure of these dependencies).

java.util.Random for random number generation. This alternative is compatible with both
Java and MathCommons random types. bayonet.math.SpecialFunctions provides several sta-
tistical utility functions that are used heavily in Blang.

C.2. inits
inits (https://github.com/UBC-Stat-ML/inits) is a framework for performing scientific
simulations, and can be viewed as a dependency injection framework tailored to complex and
hierarchical command-line arguments. Blang’s CLI argument setup is automatically handled
by inits.

C.3. xlinear
Blang’s linear algebra is based on xlinear (https://github.com/UBC-Stat-ML/xlinear),
which itself relies on ApacheCommons, ParallelColt, and JEigen. The simple API of xlinear
and the operator overloading functionality is what is leveraged in Blang to augment the
DenseMatrix and SparseMatrix types into DenseSimplex and DenseTransitionMatrix.

D. Output format

Output organization

Every Blang execution creates a unique directory. The path is outputted to standard out at
the end of the program’s execution/run. The latest run is also softlinked at results/latest.
The directory has the following structure:

• arguments-details.txt: a detailed list of all arguments and options.

• arguments.tsv: arguments used in current run.

• executionInfo: information for reproducibility (JVM arguments, version of the code,
standard out, etc.).

https://github.com/UBC-Stat-ML/inits
https://github.com/UBC-Stat-ML/xlinear
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index sample value
0 0 0.453
1 0 0.386
2 0 0.886
0 1 0.520
1 1 0.345
2 1 0.940

Table 6: Example of the format used for posterior samples stored in tidy CSV files.

• init: information about the initialization process.

• monitoring: diagnostics for samplers.

• samples: samples from the target distribution. By default each random variable in the
running model is output for each iteration (to disable this for some variables, e.g., those
that are fully observed, use --excludeFromOutput).

• logNormalizationEstimate.csv: estimate of the natural logarithm of the probability
of the data (also known as the log of the normalization constant of the prior times the
likelihood, integrating over the latent variables).

Additional files and directories if --postProcessor DefaultPostProcessor is specified:

• ess: information for ESS and energy (negative log-likelihood) for each chain.

• monitoringPlots: sampler diagnostic plots.

• posteriorPlots: posterior densities and probability mass functions.

• summaries: summary statistics such as posterior means, HDIs, etc.

• tracePlots: trace plots for the random variables, log-density, and energy for each chain
with burn-in samples discarded.

• tracePlotsFull: trace plots with all samples included.

Format of the samples

Posterior samples are stored in tidy CSV files. E.g., two samples for a java.util.List of
three RealVar’s are shown in Table 6. By default, the method toString is used to create
the last column (value). How can this be modified to encompass arbitrary data types? For
example, how we output an object from permutation space (as in Section 9) as a tidy CSV is
shown in Table 7.
This behavior can be customized to adhere to the tidy philosophy by implementing the in-
terface TidilySerializable for a class of arbitrary data type.78 The method serialize

78https://www.stat.ubc.ca/~bouchard/blang/javadoc-inits/blang/inits/experiments/tabwriters/
TidilySerializable.html

https://www.stat.ubc.ca/~bouchard/blang/javadoc-inits/blang/inits/experiments/tabwriters/TidilySerializable.html
https://www.stat.ubc.ca/~bouchard/blang/javadoc-inits/blang/inits/experiments/tabwriters/TidilySerializable.html
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index permutation_index sample value
0 0 0 2
0 1 0 0
0 2 0 1
1 0 0 1
...

...
...

...

Table 7: Example of the format used for posterior samples with arbitrary data types stored
in tidy CSV files.

override void serialize ( Context context ) {
for (int i : 0 ..< componentSize )

context . recurse ( connections .get(i), " permutation_index ", i)
}

Figure 38: Permutation file Permutation.xtend used to instruct the sampler to parse and
output the custom data type.

is invoked and passed an instance of Context.79 Using context.recurse(Object child,
Object key, Object value ), we can instruct the sampler to parse and output the custom
data type as illustrated in Figure 38. The child argument is the value to write. The key is
the name of the key, for example permutation_index. The value is the value of the key, for
example index i of value in object.
Additional examples can be found in TestTidySerializer.xtend.80

Output options

The following command-line arguments can be used to tune the output:

• --excludeFromOutput: space-separated list of random variables to exclude from out-
put.

• --experimentConfigs.managedExecutionFolder: set to false in order to output in
the current folder instead of in the unique folder created in results/all.

• --experimentConfigs.recordExecutionInfo: set to false to skip recording the repro-
ducibility information in executionInfo.

• --experimentConfigs.recordGitInfo: set to false to skip git repository lookup for
the code.

• --experimentConfigs.saveStandardStreams: set to false to skip recording the stan-
dard out and err.

• --experimentConfigs.tabularWriter: by default set to CSV. Can be set to Spark
to organize tidy output into a hierarchy of directories each having a CSV (with less

79See the Context design pattern.
80https://github.com/UBC-Stat-ML/inits/blob/master/src/test/java/blang/inits/

TestTidySerializer.xtend

https://github.com/UBC-Stat-ML/inits/blob/master/src/test/java/blang/inits/TestTidySerializer.xtend
https://github.com/UBC-Stat-ML/inits/blob/master/src/test/java/blang/inits/TestTidySerializer.xtend


88 Blang: Bayesian Modeling of General Data Structures

columns, as many columns in this format can now be inferred from the names of the
parent directories). In certain scenarios this could save disk space. Inter-operable with
Spark.

E. List of probability distributions in Blang’s library

E.1. Discrete distributions

Random variables in this section are integer-valued, hence IntVars. The distributions are
listed in the following:
Bernoulli: Any random variable taking values in {0, 1}.

• param RealVar probability: Probability p ∈ [0, 1] that the realization is one.

BetaBinomial: A sum of n IID Bernoulli variables, with a marginalized Beta prior on the
success probability. Values in {0, 1, 2, . . . , n}.

• param IntVar numberOfTrials: The number n of Bernoulli variables being summed.
n > 0.

• param RealVar alpha: Higher values bring the mean closer to one. α > 0.

• param RealVar beta: Higher values bring the mean closer to zero. β > 0.

Binomial: A sum of n IID Bernoulli variables. Values in {0, 1, 2, . . . , n}.

• param IntVar numberOfTrials: The number n of Bernoulli variables being summed.
n > 0.

• param RealVar probabilityOfSuccess: The parameter p ∈ [0, 1] shared by all the
Bernoulli variables (probability that they be equal to 1).

Categorical: Any random variable over a finite set {0, 1, 2, . . . , n− 1}.

• param Simplex probabilities: Vector of probabilities (p0, p1, . . . , pn−1) for each of
the n integers.

DiscreteUniform: Uniform random variable over the contiguous set of integers {m,m +
1, . . . ,M − 1}.

• param IntVar minInclusive: The left point of the set (inclusive). m ∈ (−∞,M).

• param IntVar maxExclusive: The right point of the set (exclusive). M ∈ (m,∞).

Geometric: The number of unsuccessful Bernoulli trials until a success. Values in {0, 1, 2, . . . }.
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• param RealVar p: The probability of success for each Bernoulli trial.

HyperGeometric: Hyper-geometric distribution with population N and population satisfying
certain condition K and drawing n samples.

• param IntVar numberOfDraws: number of samples n.

• param IntVar population: number of population N .

• param IntVar populationConditioned: number of population satisfying condition K.

NegativeBinomial: Number of successes in a sequence of IID Bernoulli until (r) failures
occur. Values in {0, 1, 2, . . . }.

• param RealVar r: Number of failures until experiment is stopped (generalized to the
reals). r > 0.

• param RealVar p: Probability of success of each experiment. p ∈ (0, 1).

Poisson: Poisson random variable. Values in {0, 1, 2, . . . }.

• param RealVar mean: Mean parameter λ. λ > 0.

YuleSimon: An exponential-geometric mixture.

• param RealVar rho: The rate of the mixing exponential distribution.

E.2. Continuous distributions

Random variables in this section are real-valued, hence RealVars. The distributions are listed
in the following:
Beta: Beta random variable on the open interval (0, 1).

• param RealVar alpha: Higher values bring the mean closer to one. α > 0.

• param RealVar beta: Higher values bring the mean closer to zero. β > 0.

ChiSquared: Chi Squared random variable. Values in (0,∞).

• param IntVar nu: The degrees of freedom ν. ν > 0.

ContinuousUniform: Uniform random variable over a close interval [m,M ].

• param RealVar min: The left end point m of the interval. m ∈ (∞,M).

• param RealVar max: The right end point of the interval. M ∈ (m,∞).
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Exponential: Exponential random variable. Values in (0,∞).

• param RealVar rate: The rate λ, inversely proportional to the mean. λ > 0.

F: The F-distribution. Also known as Fisher-Snedecor distribution. Values in (0,∞).

• param RealVar d1, d2: The degrees of freedom d1 and d2. d1, d2 > 0.

Gamma: Gamma random variable. Values in (0,∞).

• param RealVar shape: The shape α is proportional to the mean and variance. α > 0.

• param RealVar rate: The rate β is inverse proportional to the mean and quadrati-
cally inverse proportional to the variance. β > 0.

Gompertz: The Gompertz distribution. Values in [0,∞).

• param RealVar shape: The shape parameter ν. ν > 0.

• param RealVar scale: The scale parameter b. b > 0.

Gumbel: The Gumbel distribution. Values in R.

• param RealVar location: The location parameter µ. µ ∈ R.

• param RealVar scale: The scale parameter β. β > 0.

HalfStudentT: Half-Student T random variable. Values in (0,∞).

• param RealVar nu: A degree of freedom parameter ν. ν > 0.

• param RealVar sigma: A scale parameter σ. σ > 0.

Laplace: The Laplace distribution over R.

• param RealVar location: The mean parameter µ. µ ∈ R.

• param RealVar scale: The scale parameter b, equal to the square root of half of the
variance. b > 0.

Logistic: A random variable with a logistic probability distribution function. Values in R.

• param RealVar location: The center of the probability density function. Also the
mean, mode and median. µ ∈ R.

• param RealVar scale: The scale parameter. s > 0.

LogLogistic: A random variable with a log-logistic probability distribution function. Values
in [0,∞)
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• param RealVar scale: The scale parameter α and also the median. α > 0.

• param RealVar shape: The shape parameter β. β > 0.

Normal: Normal random variables. Values in R.

• param RealVar mean: Mean µ. µ ∈ R.

• param RealVar variance: Variance σ2. σ2 > 0.

StudentT: Student T random variable. Values in R.

• param RealVar nu: The degrees of freedom ν. ν > 0.

• param RealVar mu: Location parameter µ. µ ∈ R.

• param RealVar sigma: Scale parameter σ. σ > 0.

Weibull: The Weibull distribution. Values in (0,∞).

• param RealVar scale: The scale parameter λ. λ ∈ (0,∞).

• param RealVar shape: The shape parameter k. k ∈ (0,∞).

E.3. Multivariate distributions

The distributions are listed in the following:
Dirichlet: The Dirichlet distribution over vectors of probabilities (p0, p1, . . . , pn−1). pi ∈
(0, 1), ∑

i pi = 1. Random variables with this distribution are of type Simplex.

• param Matrix concentrations: Vector (α0, α1, . . . , αn−1) such that increasing the
ith component increases the mean of entry pi.

MultivariateNormal: Arbitrary linear transformations of n IID standard normal random
variables. Random variables with this distribution are of type Matrix.

• param Matrix mean: An n× 1 vector µ. µ ∈ Rn

• param CholeskyDecomposition precision: Inverse covariance matrix Λ, a positive
definite n× n matrix.

NormalField: A mean-zero normal, sparse-precision Markov random field. Random variables
with this distribution are of type Plated<RealVar>.

• param Precision precision: Precision matrix structure.

SimplexUniform: n dimensional Dirichlet with all concentrations equal to one. Random
variables with this distribution are of type Simplex.
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• param Integer dim: The dimensionality n. n > 0

SymmetricDirichlet: n dimensional Dirichlet with all concentrations equal to α
n . Random

variables with this distribution are of type Simplex.

• param Integer dim: The dimensionality n. n > 0.

• param RealVar concentration: The shared concentration parameter α before nor-
malization by the dimensionality. α > 0.

E.4. Miscellaneous

LogPotential: A utility to handle undirected models (or random fields).

• param RealVar logPotential: The log of the current value of this potential.

F. Frequently used functions
Any Java function can be called in Blang. The functions in Figures 8 and 9 are automatically
and statically imported for easy access. The functions provided in Table 8 are the most useful
of those imported. In addition to these functions, Blang also imports two fields E and PI from
java.lang.Math.
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Function Description
abs(double value) absolute value
acos(double a) arccosine
asin(double a) arcsine
atan(double a) arctangent
cbrt(double a) cube root
ceil(double a) ceiling
cos(double a) cosine
cosh(double a) hyperbolic cosine
exp(double a) exponential base e
floor(double a) floor
log(double a) logarithm base e
log10(double a) logarithm base 10
max(double a, double b) maximum of a and b
min(double a, double b) minimum of a and b
pow(double a, double b) a to the power b
signum(double a) signum function
sin(double a) sine
sinh(double a) hyperbolic sine
sqrt(double a) square root
tan(double a) tangent
tanh(double a) hyperbolic tangent

Imported Fields Description
E Java’s double value for e
PI Java’s double value for π

Table 8: Functions imported from java.lang.Math. Note that all trigonometric operations use
angles expressed in radians and that the return type of all functions listed above are double.

Function Description
erf(double a) error function
inverseErf(double a) inverse error function
logistic(double a) standard logistic function
logit(double a) standard logit function
logBinomial(int n, int k) logarithm of

(n
k

)
lnGamma(double alpha) logarithm of the gamma function of alpha
logFactorial(int input) logarithm of the factorial of input
multivariateLogGamma(int dim, double a) logarithm of the multivariate gamma

function

Table 9: Functions imported from bayonet.math.SpecialFunctions. All return types are
double.
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Function
D

escription
R

eturn
Type
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integer
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latentReal()
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integer

scalar
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...
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Function
D

escription
R

eturn
Type
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