69 research outputs found

    Mathematical models for farm tractor rollover prediction

    Get PDF
    This paper deals with the estimation of the rollover limit of a farm tractor. The rollover phenomenon is investigated by considering the static stability of the farm tractor on a sloped surface. Three mathematical models are derived to understand the basic features of the rollover mechanism. The models are able to predict the (static) rollover limit for any orientation of the farm tractor with respect to the slope. The effects of tyre stiffness (vertical and lateral) and nonsymmetric implement positioning are analysed. The classical architecture of the farm tractor equipped with a pivoting front axle is compared with the adoption of a passively suspended front axle. In case of a front axle suspension, the rollover limit of the vehicle can be improved, especially when employing non-symmetric implements

    Robust Optimization of Road Vehicle Suspension Considering the Variation of Tire Vertical Stiffness

    Get PDF
    Tire vertical stiffness is influenced by many factors. The inflation pressure, tire dimension, and usage of run-flat tire are considered in this paper. Robust multi-objective optimization technique is used to optimize the suspension performance considering the variation of the tire vertical stiffness. Three objective functions, discomfort, road holding, and working space are used to evaluate the dynamic behavior of the suspension considering a two-degree-of-freedom quarter-car model excited by a random road profile. The Pareto-optimal solutions in terms of suspension spring stiffness and damping coefficient are obtained and compared with the one computed by means of a deterministic approach. Solutions obtained by means of the robust optimization method are proven to be less sensitive to the possible variations of the tire vertical stiffness without influencing significantly the expected performance

    A McPherson lightweight suspension arm

    Get PDF
    The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure. The detailed understanding gained with the simple structure has been transferred on the actual suspension arm. The McPherson arm has been produced and withstood the technical specifications

    Applying a probabilistic model of rainfall and snow days occurrence to daily series recorded in NW Italy.

    Get PDF
    Daily precipitation records exist spanning several decades. A valuable amount of climatic information exists in the time-series of interarrival times (IT), defined as the succession of times (number of days) elapsed from a rainy (or snowy) day to the one immediately preceding it.In a previous work, Agnese et al. (2014) have been successfully tested some probabilistic modelling of rain occurrence on Sicily rainfall data; particularly, the better fitting of IT’s observed frequencies was obtained by 3-parameter Lerch-series distribution. In this work thisdistribution is tested on 70 years of 20 precipitation time-series taken in the North-West Italy, both in the plain and in the mountains, up to the 2000 meters altitude. In such Mediterranean climatetwo markedly different behaviours were observed in the dry semester (April to September) and in the wet one (October to March). A better fit was obtained with that simple subdivision of the year, in comparison with the whole year modelling. However, the NW Italy climate is both more similar to the Central Europe one, and it is deeply influenced by the higher peaks of the Alps. Therefore the seasonality of daily precipitation data is much more complicated. Usually spring and fall are the seasons characterized by the higher precipitations, but the convective vs. frontal events also play a role in the IT distributions. In this work, different subdivisions were compared with the whole year fitting. The whole year Lerch distributions successfully fitted the data in a part of the time series, opening the way to interesting climate applications

    Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection

    Get PDF
    The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response

    Comparison between Capillary and Serum Lactate Levels in Predicting Short-Term Mortality of Septic Patients at the Emergency Department

    Get PDF
    Sepsis is a time-dependent and life-threating condition related to macro- and micro-circulatory impairment leading to anaerobic metabolism and lactate increase. We assessed the prognostic accuracy of capillary lactates (CLs) vs. serum ones (SLs) on 48-h and 7-day mortality in patients with suspected sepsis. This observational, prospective, single-centre study was conducted between October 2021 and May 2022. Inclusion criteria were: (i) suspect of infection; (ii) qSOFA ≥ 2; (iii) age ≥ 18 years; (iv) signed informed consent. CLs were assessed with LactateProTM2®. 203 patients were included: 19 (9.3%) died within 48 h from admission to the Emergency Department, while 28 (13.8%) within 7 days. Patients deceased within 48 h (vs. survived) had higher CLs (19.3 vs. 5 mmol/L, p < 0.001) and SLs (6.5 vs. 1.1 mmol/L, p = 0.001). The best CLs predictive cut-off for 48-h mortality was 16.8 mmol/L (72.22% sensitivity, 94.02% specificity). Patients within 7 days had higher CLs (11.5 vs. 5 mmol/L, p = 0.020) than SLs (2.75 vs. 1.1 mmol/L, p < 0.001). The multivariate analysis confirmed CLs and SLs as independent predictors of 48-h and 7-day mortality. CLs can be a reliable tool for their inexpensiveness, rapidity and reliability in identifying septic patients at high risk of short-term mortality

    Assessing root water uptake transit time by simulating isotope transport in Hydrus-1D

    Get PDF
    Stable isotopes (2H and 18O) are common natural tracers for the investigation of water transport in the soil-plant-atmosphere continuum. Isotopic data can be coupled with soil water content data to inversely estimate soil hydraulic and transport parameters. The calibration of a hydrological model by inverse modelling is a prerequisite to determine the temporal origin of xylem water taken by roots. In this study, we used isotopic data to calibrate Hydrus-1D via inverse modelling to simulate one-dimensional water flow and isotope transport in a controlled soil-plant-atmosphere system. We propose the following protocol i) to estimate root water uptake transit time of irrigation water, and ii) to assess the sensitivity of the transit time distribution to the variation in the water available for root uptake. The dataset was obtained from an isotope-tracing experiment carried out between May and July 2018 on an olive tree placed in a pot inside a glasshouse. Meteorological variables and sap flow were monitored at 5-minute intervals, whereas shallow soil moisture (0-6 cm depth) was measured manually with an impedance probe at the daily timescale. The olive tree was irrigated with water of known isotopic composition. The pot surface was covered by a plastic sheet to avoid evaporation. Soil at different depths, twigs, wood cores and root samples were collected weekly for isotopic analyses. Water from soil and the xylem tissues was extracted by cryogenic vacuum distillation. Based on the results of a previous study carried out on the same dataset, we considered that no isotopic fractionation occurred during the water uptake and the transport within the olive tree. We used soil water content and δ18O data at different soil depths to optimize flow (soil hydraulic and root water uptake parameters) and transport (longitudinal dispersivity) parameters. Numerical simulations of isotope transport were validated with sap flow data (compared to actual transpiration) and δ18O in xylem water. Given that the timing of irrigation water for plant transpiration is fundamental for assessing the vulnerability of olive trees to drought, we will be proposing various scenarios based on different irrigation events to mimic drought periods. Based on these scenarios, we will be evaluating the sensitivity of the root water uptake transit time to the different water availability in the soil profile. Afterwards, the same protocol will be exploited to determine the root water uptake transit time for different tree species under various environmental conditions

    Mitochondrial Pathway Mediates the Antileukemic Effects of Hemidesmus Indicus, a Promising Botanical Drug

    Get PDF
    Although cancers are characterized by the deregulation of multiple signalling pathways, most current anticancer therapies involve the modulation of a single target. Because of the enormous biological diversity of cancer, strategic combination of agents targeted against the most critical of those alterations is needed. Due to their complex nature, plant products interact with numerous targets and influence several biochemical and molecular cascades. The interest in further development of botanical drugs has been increasing steadily and the FDA recently approved the first new botanical prescription drug. The present study is designed to explore the potential antileukemic properties of Hemidesmus indicus with a view to contributing to further development of botanical drugs. Hemidesmus was submitted to an extensive in vitro preclinical evaluation.A variety of cellular assays and flow cytometry, as well as a phytochemical screening, were performed on different leukemic cell lines. We have demonstrated that Hemidesmus modulated many components of intracellular signaling pathways involved in cell viability and proliferation and altered the protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential and increased Bax/Bcl-2 ratio. ADP, adenine nucleotide translocator and mitochondrial permeability transition pore inhibitors did not reverse Hemidesmus-induced mitochondrial depolarization. Hemidesmus induced a significant [Ca(2+)](i) raise through the mobilization of intracellular Ca(2+) stores. Moreover, Hemidesmus significantly enhanced the antitumor activity of three commonly used chemotherapeutic drugs (methotrexate, 6-thioguanine, cytarabine). A clinically relevant observation is that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemic patients.These results indicate the molecular basis of the antileukemic effects of Hemidesmus and identify the mitochondrial pathways and [Ca(2+)](i) as crucial actors in its anticancer activity. On these bases, we conclude that Hemidesmus can represent a valuable tool in the anticancer pharmacology, and should be considered for further investigations

    Crack propagation in pneumatic tires: Continuum mechanics and fracture mechanics approaches

    No full text
    In this paper, the fatigue life of pneumatic tires is investigated with particular focus on the phenomenon of belt separation. This phenomenon yields the propagation of fatigue cracks in the rubber separating the belts; not the separation of the rubber at the interfaces with the belts. Cracks at the belts edges are related among others to the high stress concentration due to the very different stiffness of the two mate- rials. A steady-state rolling finite element model of the full tire is used to evaluate the stress and strain fields in the rubber at the edges of the belts. Suitable life predictors are defined and computed for the identification of the zones with a higher expectation of failure. For the evaluation of crack propagation in the bulk rubber material between different belts, in principle, two different approaches are employed associated with crack nucleation and crack growth. The two approaches are applied to the study of crack propagation in a truck tire and the results of different pre- dictors are compared to crack propagation found in a real tire
    corecore