11,798 research outputs found
Radiative processes in external gravitational fields
Kinematically forbidden processes may be allowed in the presence of external
gravitational fields. These ca be taken into account by introducing generalized
particle momenta. The corresponding transition probabilities can then be
calculated to all orders in the metric deviation from the field-free
expressions by simply replacing the particle momenta with their generalized
counterparts. The procedure applies to particles of any spin and to any
gravitational fields. transition probabilities, emission power, and spectra
are, to leading order, linear in the metric deviation. It is also shown how a
small dissipation term in the particle wave equations can trigger a strong
backreaction that introduces resonances in the radiative process and deeply
affects the resulting gravitational background.Comment: 5 pages, 1 figur
On the reconstruction of diagonal elements of density matrix of quantum optical states by on/off detectors
We discuss a scheme for reconstructing experimentally the diagonal elements
of the density matrix of quantum optical states. Applications to PDC heralded
photons, multi-thermal and attenuated coherent states are illustrated and
discussed in some details.Comment: 10 pages, presented at Palermo "TQMFA2005" Conference. To appear on
"Open Systems & Information Dynamics" (2006
The Visible and Near Infrared module of EChO
The Visible and Near Infrared (VNIR) is one of the modules of EChO, the
Exoplanets Characterization Observatory proposed to ESA for an M-class mission.
EChO is aimed to observe planets while transiting by their suns. Then the
instrument had to be designed to assure a high efficiency over the whole
spectral range. In fact, it has to be able to observe stars with an apparent
magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary
to reveal the characteristics of the atmospheres of the exoplanets under
investigation. VNIR is a spectrometer in a cross-dispersed configuration,
covering the 0.4-2.5 micron spectral range with a resolving power of about 330
and a field of view of 2 arcsec. It is functionally split into two channels
respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a
solution is imposed by the fact the light at short wavelengths has to be shared
with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars
under observation. The spectrometer makes use of a HgCdTe detector of 512 by
512 pixels, 18 micron pitch and working at a temperature of 45K as the entire
VNIR optical bench. The instrument has been interfaced to the telescope optics
by two optical fibers, one per channel, to assure an easier coupling and an
easier colocation of the instrument inside the EChO optical bench.Comment: 26 page
EChO Payload electronics architecture and SW design
EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer,
covering the wavelength range from 0.55 m, to 11.0 m. The baseline
design includes the goal wavelength extension to 0.4 m while an optional
LWIR module extends the range to the goal wavelength of 16.0 m.
An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem
interfacing the spacecraft and collecting data from all the payload
spectrometers modules. ICU is in charge of two main tasks: the overall payload
control (Instrument Control Function) and the housekeepings and scientific data
digital processing (Data Processing Function), including the lossless
compression prior to store the science data to the Solid State Mass Memory of
the Spacecraft. These two main tasks are accomplished thanks to the Payload On
Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201
Preeminent role of the Van Hove singularity in the strong-coupling analysis of scanning tunneling spectroscopy for two-dimensional cuprates
In two dimensions the non-interacting density of states displays a Van Hove
singularity (VHS) which introduces an intrinsic electron-hole asymmetry, absent
in three dimensions. We show that due to this VHS the strong-coupling analysis
of tunneling spectra in high- superconductors must be reconsidered. Based
on a microscopic model which reproduces the experimental data with great
accuracy, we elucidate the peculiar role played by the VHS in shaping the
tunneling spectra, and show that more conventional analyses of strong-coupling
effects can lead to severe errors.Comment: 5 pages, 4 figure
On -Core Percolation in Four Dimensions
The -core percolation on the Bethe lattice has been proposed as a simple
model of the jamming transition because of its hybrid first-order/second-order
nature. We investigate numerically -core percolation on the four-dimensional
regular lattice. For the presence of a discontinuous transition is
clearly established but its nature is strictly first order. In particular, the
-core density displays no singular behavior before the jump and its
correlation length remains finite. For the transition is continuous
Convergence in Total Variation for nonlinear functionals of random hyperspherical harmonics
Random hyperspherical harmonics are Gaussian Laplace eigenfunctions on the unit d-dimensional sphere (d >= 2). We study the convergence in Total Variation distance for their nonlinear statistics in the high energy limit, i.e., for diverging sequences of Laplace eigenvalues. Our approach takes advantage of a recent result by Bally, Caramellino and Poly (2020): combining the Central Limit Theorem in Wasserstein distance obtained by Marinucci and Rossi (2015) for Hermite-rank 2 functionals with new results on the asymptotic behavior of their Malliavin-Sobolev norms, we are able to establish second order Gaussian fluctuations in this stronger probability metric as soon as the functional is regular enough. Our argument requires some novel estimates on moments of products of Gegenbauer polynomials that may be of independent interest, which we prove via the link between graph theory and diagram formulas. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:/
The NIF LinkOut Broker: A Web Resource to Facilitate Federated Data Integration using NCBI Identifiers
This paper describes the NIF LinkOut Broker (NLB) that has been built as part of the Neuroscience Information Framework (NIF) project. The NLB is designed to coordinate the assembly of links to neuroscience information items (e.g., experimental data, knowledge bases, and software tools) that are (1) accessible via the Web, and (2) related to entries in the National Center for Biotechnology Information’s (NCBI’s) Entrez system. The NLB collects these links from each resource and passes them to the NCBI which incorporates them into its Entrez LinkOut service. In this way, an Entrez user looking at a specific Entrez entry can LinkOut directly to related neuroscience information. The information stored in the NLB can also be utilized in other ways. A second approach, which is operational on a pilot basis, is for the NLB Web server to create dynamically its own Web page of LinkOut links for each NCBI identifier in the NLB database. This approach can allow other resources (in addition to the NCBI Entrez) to LinkOut to related neuroscience information. The paper describes the current NLB system and discusses certain design issues that arose during its implementation
Limited Preemptive Scheduling for Real-Time Systems: a Survey
The question whether preemptive algorithms are better than nonpreemptive ones for scheduling a set of real-time tasks has been debated for a long time in the research community. In fact, especially under fixed priority systems, each approach has advantages and disadvantages, and no one dominates the other when both predictability and efficiency have to be taken into account in the system design. Recently, limited preemption models have been proposed as a viable alternative between the two extreme cases of fully preemptive and nonpreemptive scheduling. This paper presents a survey of the existing approaches for reducing preemptions and compares them under different metrics, providing both qualitative and quantitative performance evaluations
On the Effects of Changing the Boundary Conditions on the Ground State of Ising Spin Glasses
We compute and analyze couples of ground states of 3D spin glass systems with
the same quenched noise but periodic and anti-periodic boundary conditions for
different lattice sizes. We discuss the possible different behaviors of the
system, we analyze the average link overlap, the probability distribution of
window overlaps (among ground states computed with different boundary
conditions) and the spatial overlap and link overlap correlation functions. We
establish that the picture based on Replica Symmetry Breaking correctly
describes the behavior of 3D Spin Glasses.Comment: 25 pages with 11 ps figures include
- …