11,714 research outputs found
Entanglement, BEC, and superfluid-like behavior of two-mode photon systems
A system of two interacting photon modes, without constraints on the photon
number, in the presence of a Kerr nonlinearity, exhibits BEC if the transfer
amplitude is greater than the mode frequency. A symmetry-breaking field (SBF)
can be introduced by taking into account a classical electron current. The
ground state, in the limit of small nonlinearity, becomes a squeezed state, and
thus the modes become entangled. The smaller is the SBF, the greater is
entanglement. Superfluid-like behavior is observed in the study of entanglement
growth from an initial coherent state, since in the short-time range the growth
does not depend on the SBF amplitude, and on the initial state amplitude. On
the other hand, the latter is the only parameter which determines entanglement
in the absence of the SBF
Teleportation on a quantum dot array
We present a model of quantum teleportation protocol based on a double
quantum dot array. The unknown qubit is encoded using a pair of quantum dots,
coupled by tunneling, with one excess electron. It is shown how to create
maximally entangled states with this kind of qubits using an adiabatically
increasing Coulomb repulsion between different pairs. This entangled states are
exploited to perform teleportation again using an adiabatic coupling between
them and the incoming unknown state. Finally, a sudden separation of Bob's
qubit enables a time evolution of Alice's state providing a modified version of
standard Bell measurement. Substituting the four quantum dots entangled state
with a chain of coupled DQD's, a quantum channel with high fidelity arises from
this scheme allowing the transmission over long distances.Comment: 4 pages, 2 figure
The response of precipitation characteristics to global warming from climate projections
Abstract. We revisit the issue of the response of precipitation characteristics to
global warming based on analyses of global and regional climate model
projections for the 21st century. The prevailing response we identify can be
summarized as follows: increase in the intensity of precipitation events and
extremes, with the occurrence of events of "unprecedented" magnitude, i.e.,
a magnitude not found in the present-day climate; decrease in the number of light
precipitation events and in wet spell lengths; and increase in the number of dry
days and dry spell lengths. This response, which is mostly consistent across
the models we analyzed, is tied to the difference between precipitation
intensity responding to increases in local humidity conditions and
circulations, especially for heavy and extreme events, and mean precipitation
responding to slower increases in global evaporation. These changes in
hydroclimatic characteristics have multiple and important impacts on the
Earth's hydrologic cycle and on a variety of sectors. As examples we
investigate effects on potential stress due to increases in dry and wet
extremes, changes in precipitation interannual variability, and changes in
the potential predictability of precipitation events. We also stress how the
understanding of the hydroclimatic response to global warming can provide
important insights into the fundamental behavior of precipitation processes,
most noticeably tropical convection
Density functional theory for strongly interacting electrons
We present an alternative to the Kohn-Sham formulation of density functional
theory for the ground-state properties of strongly interacting electronic
systems. The idea is to start from the limit of zero kinetic energy and
systematically expand the universal energy functional of the density in powers
of a "coupling constant" that controls the magnitude of the kinetic energy. The
problem of minimizing the energy is reduced to the solution of a strictly
correlated electron problem in the presence of an effective potential, which
plays in our theory the same role that the Kohn-Sham potential plays in the
traditional formulation. We discuss several schemes for approximating the
energy functional, and report preliminary results for low-density quantum dots.Comment: Revised version, to appear in Phys. Rev. Let
Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations
During the long course of evolution, nature has learnt how to exploit quantum
effects. In fact, recent experiments reveal the existence of quantum processes
whose coherence extends over unexpectedly long time and space ranges. In
particular, photosynthetic processes in light-harvesting complexes display a
typical oscillatory dynamics ascribed to quantum coherence. Here, we consider
the simple model where a dimer made of two chromophores is strongly coupled
with a quasi-resonant vibrational mode. We observe the occurrence of wide
oscillations of genuine quantum correlations, between electronic excitations
and the environment, represented by vibrational bosonic modes. Such a quantum
dynamics has been unveiled through the calculation of the negativity of
entanglement and the discord, indicators widely used in quantum information for
quantifying the resources needed to realize quantum technologies. We also
discuss the possibility of approximating additional weakly-coupled off-resonant
vibrational modes, simulating the disturbances induced by the rest of the
environment, by a single vibrational mode.
Within this approximation, one can show that the off-resonant bath behaves
like a classical source of noise
The interaction-strength interpolation method for main-group chemistry: benchmarking, limitations, and perspectives
We have tested the original interaction-strength-interpolation (ISI)
exchange-correlation functional for main group chemistry. The ISI functional is
based on an interpolation between the weak and strong coupling limits and
includes exact-exchange as well as the G\"orling-Levy second-order energy. We
have analyzed in detail the basis-set dependence of the ISI functional, its
dependence on the ground-state orbitals, and the influence of the
size-consistency problem. We show and explain some of the expected limitations
of the ISI functional (i.e. for atomization energies), but also unexpected
results, such as the good performance for the interaction energy of
dispersion-bonded complexes when the ISI correlation is used as a correction to
Hartree-Fock.Comment: 20 pages, 20 figure
Plasma flows and magnetic field interplay during the formation of a pore
We studied the formation of a pore in AR NOAA 11462. We analysed data
obtained with the IBIS at the DST on April 17, 2012, consisting of full Stokes
measurements of the Fe I 617.3 nm lines. Furthermore, we analysed SDO/HMI
observations in the continuum and vector magnetograms derived from the Fe I
617.3 nm line data taken from April 15 to 19, 2012. We estimated the magnetic
field strength and vector components and the LOS and horizontal motions in the
photospheric region hosting the pore formation. We discuss our results in light
of other observational studies and recent advances of numerical simulations.
The pore formation occurs in less than 1 hour in the leading region of the AR.
The evolution of the flux patch in the leading part of the AR is faster (< 12
hour) than the evolution (20-30 hour) of the more diffuse and smaller scale
flux patches in the trailing region. During the pore formation, the ratio
between magnetic and dark area decreases from 5 to 2. We observe strong
downflows at the forming pore boundary and diverging proper motions of plasma
in the vicinity of the evolving feature that are directed towards the forming
pore. The average values and trends of the various quantities estimated in the
AR are in agreement with results of former observational studies of steady
pores and with their modelled counterparts, as seen in recent numerical
simulations of a rising-tube process. The agreement with the outcomes of the
numerical studies holds for both the signatures of the flux emergence process
(e.g. appearance of small-scale mixed polarity patterns and elongated granules)
and the evolution of the region. The processes driving the formation of the
pore are identified with the emergence of a magnetic flux concentration and the
subsequent reorganization of the emerged flux, by the combined effect of
velocity and magnetic field, in and around the evolving structure.Comment: Accepted for publication in Astronomy and Astrophysic
- …