52 research outputs found

    Toxicological Characterization of GHB as a Performance-Enhancing Drug

    Get PDF
    Performance-enhancing drugs (PEDs) are represented by several compounds used to ameliorate the image, the appearance, or an athletic or non-athletic performance. Gamma-hydroxybutyrate (GHB) is an endogenous molecule first used as anesthetic and then marketed as a nutritional supplement with a wide diffusion in the bodybuilding community. The aim of the present work is to provide a toxicological characterization of the use of GHB as a PED, including the scientific basis for its use, the patterns of use/abuse, and the health risks arising from its consumption in this peculiar recreative setting. A literature search was performed on multiple databases including experimental studies on humans and animals as well as epidemiological reports and forensic case reports/series. Experimental studies demonstrated that the use of GHB as a PED is motivated by the release of growth hormone and the induction of sleep. However, the panel of desired performance-related effects was much wider in real cases and epidemiological studies. Even though the use of GHB among bodybuilders has decreased, its use to enhance some kind of performance, particularly sexual ones or social-communicative ones, as well as means to increase mood and perceived energy, is still common

    Post-Mortem Toxicology: A Systematic Review of Death Cases Involving Synthetic Cannabinoid Receptor Agonists

    Get PDF
    BackgroundSynthetic cannabinoid receptor agonists (SCRAs) have become the largest group of new psychoactive substances monitored by the European Union Early Warning System. Despite the wide diffusion on the market, data regarding effects, toxicities, and mechanisms as well as toxic/lethal doses are still scarce.MethodsA comprehensive literature search for articles published up to January 2019 was performed in multiple electronic databases. Only cases of death in which toxicological analyses revealed the presence of SCRAs in blood or urine and at least an external examination was performed, including those occurred in emergency departments, were included.ResultsOf 380 studies identified, 354 were excluded, while 8 additional manuscripts were included through the screening of relevant references cited in the selected articles. A total number of 34 manuscripts (8 case series and 26 case reports) were included.ConclusionsTypical toxic ranges for SCRAs have not been so far identified, and the results of toxicological analyses should be interpreted with caution. In death cases involving SCRAs, a thorough post-mortem examination is a prerequisite to assess the role of the substance use in the deceased and to identify a probable mechanism of death. Even after a comprehensive analysis of clinical, circumstantial, toxicological, and autoptic data, the cause and manner of death remain unclear in some cases

    Editorial: Misuse and abuse of prescription drugs in custodial settings

    Get PDF
    © 2023 The Author(s). This is an open access editorial distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Peer reviewe

    Detection of AP-237 and synthetic cannabinoids on an infused letter sent to a German prisoner

    Get PDF
    In the past years, new psychoactive substances (NPS) started circulating in prisons, leading to health risks and challenges for the criminal justice system. Seizures of papers and cards impregnated with synthetic cannabinoid (SCs) have been reported. In November 2021, a letter suspected to be drug-infused was sent from a German prison to this laboratory. Toxicological analyses were performed by means of gas chromatography-mass spectrometry (GC-MS) for drug screening and liquid chromatography-tandem mass spectrometry (LC-MS/MS) as well as high-performance (HP) LC with diode-array detection (DAD) for semi-quantification of the compounds. The novel synthetic opioid (NSO) AP-237 was detected on the letter, with an estimated concentration of 1.2mug/cm2 , together with the SCs MDMB-4en-PINACA (77mug/cm2 ) and 5F-ADB (6.5mug/cm2 ). To the best of the authors' knowledge, this is the first time an NSO was detected on a drug-infused paper seized in a prison. Highly potent NSOs could easily be dissolved in organic solvents to produce impregnated papers and textiles, and this might represent a serious threat to the health of people in prison. Given the inhomogeneity in drug concentrations, health risks might in particular arise from the consumption of highly concentrated areas of the paper-so-called "hot spots"-especially when highly potent NSOs are used for infusion. Laboratories engaged in analyzing such impregnated papers should be aware of the potential presence of NSOs and adapt the respective methods accordingly

    Psychomotor performances relevant for driving under the combined effect of ethanol and synthetic cannabinoids: A systematic review

    Get PDF
    ObjectiveTo determine whether the acute co-consumption of ethanol and synthetic cannabinoids (SCs) increases the risk of a motor vehicle collision and affects the psychomotor performances relevant for driving.DesignSystematic review of the literature.Data sourcesElectronic searches were performed in two databases, unrestricted by year, with previously set method and criteria. Search, inclusion and data extraction were performed by two blind authors.ResultsTwenty articles were included, amounting to 31 cases of SCs-ethanol co-consumption. The impairment of psychomotor functions varied widely between studies, ranging from no reported disabilities to severe unconsciousness. Overall, a dose-effect relationship could not be observed.ConclusionDespite the biases and limitations of the literature studies, it seems likely that the co-consumption poses an increased risk for driving. The drugs might exert a synergistic effect on the central nervous system depression, as well as on aggressiveness and mood alterations. However, more research is needed on the topic

    Human DNA contamination of postmortem examination facilities: Impact of COVID-19 cleaning procedure

    Get PDF
    The DNA contamination of evidentiary trace samples, included those collected in the autopsy room, has significant detrimental consequences for forensic genetics investigation. After the COVID-19 pandemic, methods to prevent environmental contamination in the autopsy room have been developed and intensified. This study aimed to evaluate the level of human DNA contamination of a postmortem examination facility before and after the introduction of COVID-19-related disinfection and cleaning procedures. Ninety-one swabs were collected from the surfaces and the dissecting instruments, analyzed by real-time quantitative PCR (q-PCR), and typed for 21 autosomal STRs. Sixty-seven out of 91 samples resulted in quantifiable human DNA, ranging from 1 pg/μl to 12.4 ng/μl, including all the samples collected before the implementation of COVID-19 cleaning procedures (n = 38) and 29 out of 53 (54.7%) samples taken afterward. All samples containing human DNA were amplified, resulting in mixed (83.6%), single (13.4%), and incomplete (3%) profiles. A statistically significant decrease in DNA contamination was found for dissecting instruments after treatment with chlorhexidine and autoclave (p< 0.05). Environmental decontamination strategies adopted during the COVID-19 pandemic only partially solved the long-standing issue of DNA contamination of postmortem examination facilities. The pandemic represents an opportunity to further stress the need for standardized evidence-based protocols targeted to overcome the problem of DNA contamination in the autopsy room

    Development and validation of a rapid LC-MS/MS method for the detection of 182 novel psychoactive substances in whole blood

    Get PDF
    INTRODUCTION: The analysis of novel psychoactive substances (NPS) represents a challenge in forensic toxicology, due to the high number of compounds characterized by different structures and physicochemical properties both among different subclasses and within a single subclass of NPS. The aim of the present work is the development and validation of a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the detection of NPS in whole blood.MATERIALS AND METHODS: A protein-precipitation based LC-MS/MS method for the detection of more than 180 NPS was developed and validated by assessing the following parameters: selectivity, linearity, accuracy, precision, limit of detection (LOD) and of quantification (LOQ) recovery, and matrix effect. Then, the method was applied to real forensic samples.RESULTS: The method allowed the identification of 132 synthetic cannabinoids, 22 synthetic opioids, and 28 substances among synthetic cathinones, stimulants, and other drugs. Validation was successfully achieved for most of the compounds. Linearity was in the range of 0.25-10ng/ml for synthetic cannabinoids and 0.25-25ng/ml for other drugs. Accuracy and precision were acceptable according to international guidelines. Three cases tested positive for fentanyl and ketamine, in the setting of emergency room administration.CONCLUSIONS: The present methodology represents a fast, not expensive, wide-panel method for the analysis of more than 180 NPS by LC-MS/MS, which can be profitably applied both in a clinical context and in postmortem toxicology

    Atrophic pseudarthrosis of humeral diaphyseal fractures: medico-legal implications and methodological analysis of the evaluation

    Get PDF
    Humeral shaft fractures account for 1- 3% of all fractures and about 20-27% of those involving the humerus. In the past they were often conservatively treated, with an acceptable consolidation rate. Open reduction and internal fixation (ORIF) is the best choice in polytrauma patients, in complex or pathological fractures and in those associated with vascular injuries. Regardless the type of fixation used, these fractures can evolve into delayed union or pseudarthrosis (PSA). It should be noted that the humeral shaft itself has a high intrinsic healing potential, due to the blood supply provided by the surrounding muscles. The aim of this work is to evaluate whether the causes that led to the development of atrophic pseudarthrosis in a humeral diaphyseal fracture are attributable to inadequate management of this fearful complication and to highlight the possible medico-legal repercussions. We will try to verify whether the currently used forensic evaluation parameters of permanent disability are appropriate and adequate in relation to the complexity of such injuries. This complexity also includes the repercussions on the ergonomic efficiency of the entire limb, the relative possible postural alterations, the inevitable extension of the period of traumatic illness and the relative repercussions on the overall compromised structure of the subject

    Assessment of the structural and functional characteristics of human mesenchymal stem cells associated with a prolonged exposure of morphine

    Get PDF
    The discovery of the expression of opioid receptors in the skin and their role in orchestrating the process of tissue repair gave rise to questions regarding the potential effects of clinical morphine treatment in wound healing. Although short term treatment was reported to improve tissue regeneration, in vivo chronic administration was associated to an impairment of the physiological healing process and systemic fibrosis. Human mesenchymal stem cells (hMSCs) play a fundamental role in tissue regeneration. In this regard, acute morphine exposition was recently reported to impact negatively on the functional characteristics of hMSCs, but little is currently known about its long-term effects. To determine how a prolonged treatment could impair their functional characteristics, we exposed hMSCs to increasing morphine concentrations respectively for nine and eighteen days, evaluating in particular the fibrogenic potential exerted by the long-term exposition. Our results showed a time dependent cell viability decline, and conditions compatible with a cellular senescent state. Ultrastructural and protein expression analysis were indicative of increased autophagy, suggesting a relation to a detoxification activity. In addition, the enhanced transcription observed for the genes involved in the synthesis and regulation of type I collagen suggested the possibility that a prolonged morphine treatment might exert its fibrotic potential risk, even involving the hMSCs

    Infection Induced Fetal Inflammatory Response Syndrome (FIRS): State-of- the-Art and Medico-Legal Implications—A Narrative Review

    Get PDF
    Fetal inflammatory response syndrome (FIRS) represents the fetal inflammatory reaction to intrauterine infection or injury, potentially leading to multiorgan impairment, neonatal mortality, and morbidity. Infections induce FIRS after chorioamnionitis (CA), defined as acute maternal inflammatory response to amniotic fluid infection, acute funisitis and chorionic vasculitis. FIRS involves many molecules, i.e., cytokines and/or chemokines, able to directly or indirectly damage fetal organs. Therefore, due to FIRS being a condition with a complex etiopathogenesis and multiple organ dysfunction, especially brain injury, medical liability is frequently claimed. In medical malpractice, reconstruction of the pathological pathways is paramount. However, in cases of FIRS, ideal medical conduct is hard to delineate, due to uncertainty in diagnosis, treatment, and prognosis of this highly complex condition. This narrative review revises the current knowledge of FIRS caused by infections, maternal and neonatal diagnosis and treatments, the main consequences of the disease and their prognoses, and discusses the medico-legal implications
    corecore