2,919 research outputs found

    A search for gravitational lensing in 38 X-ray selected clusters of galaxies

    Get PDF
    We present the results of a CCD imaging survey for gravitational lensing in a sample of 38 X-ray-selected clusters of galaxies. Our sample consists of the most X-ray luminous (Lx>= 2x10^{44} erg s^{-1}) clusters selected from the Einstein Observatory Extended Medium Sensitivity Survey (EMSS) that are observable from Mauna Kea (dec > -40deg). The sample spans a redshift range of 0.15 0.5. CCD images of the clusters were obtained in excellent seeing. There is evidence of strong gravitational lensing in the form of giant arcs (length l > 8'', axis ratio l/w > 10) in 8 of the 38 clusters. Two additional clusters contain shorter arclets, and 6 more clusters contain candidate arcs that require follow-up observations to confirm their lensing origin. Since the survey does not have a uniform surface brightness limit we do not draw any conclusion based on the statistics of the arcs found. We note, however, that 60% (3 of 5) of the clusters with Lx > 10^{45} erg s^{-1}, and none of the 15 clusters with Lx < 4x10^{44} erg s^{-1} contain giant arcs, thereby confirming that high X-ray luminosity does identify the most massive systems, and thus X-ray selection is the preferred method for finding true, rich clusters at intermediate and high redshifts. The observed geometry of the arcs, most of which are thin, have large axis ratios (l/w > 10), and are aligned orthogonal to the optical major axes of the clusters, indicate the cluster core mass density profiles must be compact (steeper than isothermal). In several cases, however, there is also some evidence, in the form of possible radial arcs, for density profiles with finite core radii.Comment: Latex file, 17 pages, 7 jpeg figures, to be published in Astronomy and Astrophysics Supplement

    Evidence on Problematic Online Gaming and Social Anxiety over the Past Ten Years: a Systematic Literature Review

    Get PDF
    Purpose of Review: The present study aimed to review the literature concerning the relationship between problematic online gaming (POG) and social anxiety, taking into account the variables implicated in this relationship. This review included studies published between 2010 and 2020 that were indexed in major databases with the following keywords: Internet gaming, disorder, addiction, problematic, social phobia, and social anxiety. Recent Findings: In recent years, scientific interest in POG has grown dramatically. Within this prolific research field, difficulties associated with social anxiety have been increasingly explored in relation to POG. Indeed, evidence showed that individuals who experience social anxiety are more exposed to the risk of developing an excessive or addictive gaming behavior. Summary: A total of 30 studies satisfied the initial inclusion criteria and were included in the present literature review. Several reviewed studies found a strong association between social anxiety and online gaming disorder. Furthermore, the relationships among social anxiety, POG, age, and psychosocial and comorbid factors were largely explored. Overall, the present review showed that socially anxious individuals might perceive online video games as safer social environments than face-to-face interactions, predisposing individuals to the POG. However, in a mutually reinforcing relationship, individuals with higher POG seem to show higher social anxiety. Therefore, despite online gaming might represent an activity able to alleviate psychopathological symptoms and/or negative emotional states, people might use online gaming to counterbalance distress or negative situations in everyday life, carrying out a maladaptive coping strategy

    The contribution of faint AGN to the hard X-ray background

    Full text link
    Hard X-ray selection is the most efficient way to discriminate between accretion-powered sources, such as AGN, from sources dominated by starlight. Hard X-rays are also less affected than other bands by obscuration. We have then carried out the BeppoSAX High Energy Large Area Survey (HELLAS) in the largely unexplored 5-10 keV band, finding 180 sources in ~50 deg^2 of sky with flux >5E-14 erg cm-2 s-1. After correction for the non uniform sky coverage this corresponds to resolving about 30 % of the hard Cosmic X-ray Background (XRB). Here we report on a first optical spectroscopic identification campaign, finding 12 AGN out of 14 X-ray error-boxes studied. Seven AGN show evidence for obscuration in X-ray and optical bands, a fraction higher than in previous ROSAT or ASCA-ROSAT surveys (at a 95-99 % and 90 % confidence level respectively), thus supporting the scenario in which a significant fraction of the XRB is made by obscured AGN.Comment: MNRAS, revised version after minor referee comment

    Reversible two-step unfolding of heme-human serum albumin: A 1H-NMR relaxometric and circular dichroism study

    Get PDF
    Human serum albumin (HSA) participates in heme scavenging, the bound heme turning out to be a reactivity center and a powerful spectroscopic probe. Here, the reversible unfolding of heme-HSA has been investigated by H-1-NMR relaxometry, circular dichroism, and absorption spectroscopy. In the presence of 6 equiv of myristate ( thus fully saturating all available fatty acid binding sites in serum heme-albumin), 1.0 M guanidinium chloride induces some unfolding of heme-HSA, leading to the formation of a folding intermediate; this species is characterized by increased relaxivity and enhanced dichroism signal in the Soret region, suggesting a more compact heme pocket conformation. Heme binds to the folding intermediate with K-d = (1.2 +/- 0.1) x 10(-6) M. In the absence of myristate, the conformation of the folding intermediate state is destabilized and heme binding is weakened [K-d = (3.4 +/- 0.1) x 10(-5) M]. Further addition of guanidinium chloride ( up to 5 M) brings about the usual denaturation process. In conclusion, myristate protects HSA from unfolding, stabilizing a folding intermediate state in equilibrium with the native and the fully unfolded protein, envisaging a two-step unfolding pathway for heme-HSA in the presence of myristate

    A robust ransac-based planet radius estimation for onboard visual based navigation

    Get PDF
    Individual spacecraft manual navigation by human operators from ground station is expected to be an emerging problem as the number of spacecraft for space exploration increases. Hence, as an attempt to reduce the burden to control multiple spacecraft, future missions will employ smart spacecraft able to navigate and operate autonomously. Recently, image-based optical navigation systems have proved to be promising solutions for inexpensive autonomous navigation. In this paper, we propose a robust image processing pipeline for estimating the center and radius of planets and moons in an image taken by an on-board camera. Our custom image pre-processing pipeline is tailored for resource-constrained applications, as it features a computationally simple processing flow with a limited memory footprint. The core of the proposed pipeline is a best-fitting model based on the RANSAC algorithm that is able to handle images corrupted with Gaussian noise, image distortions, and frame drops. We report processing time, pixel-level error of estimated body center and radius and the effect of noise on estimated body parameters for a dataset of synthetic images

    The ROSAT North Ecliptic Pole Survey: The Optical Identifications

    Full text link
    The X-ray data around the North Ecliptic Pole (NEP) of the ROSAT All Sky Survey have been used to construct a contiguous area survey consisting of a sample of 445 individual X-ray sources above a flux of ~2x10^-14 erg cm^-2 s^-1 in the 0.5-2.0 keV energy band. The NEP survey is centered at RA (2000) = 18h 00m, DEC(2000) = +66deg 33arcmin and covers a region of 80.7 sq. deg at a moderate Galactic latitude of b = 29.8deg. Hence, the NEP survey is as deep and covers a comparable solid angle to the ROSAT serendipitous surveys, but is also contiguous. We have identified 99.6% of the sources and determined redshifts for the extragalactic objects. In this paper we present the optical identifications of the NEP catalog of X-ray sources including basic X-ray data and properties of the sources. We also describe with some detail the optical identification procedure. The classification of the optical counterparts to the NEP sources is very similar to that of previous surveys, in particular the Einstein Extended Medium Sensitivity Survey (EMSS). The main constituents of the catalog are active galactic nuclei (~49%), either type 1 or type 2 according to the broadness of their permitted emission lines. Stellar counterparts are the second most common identification class (~34%). Clusters and groups of galaxies comprise 14%, and BL Lacertae objects 2%. One non-AGN galaxy, and one planetary nebula have also been found. The NEP catalog of X-ray sources is a homogeneous sample of astronomical objects featuring complete optical identification.Comment: Accepted for publication in the ApJS; 33 pages including 12 postscript figures and 3 tables; uses emulateapj.sty. On-line source catalog at http://www.eso.org/~cmullis/research/nep-catalog.htm

    Two-phase densification of cohesive granular aggregates

    Get PDF
    When poured into a container, cohesive granular materials form low-density, open granular aggregates. If pressed upon with a ram, these aggregates densify by particle rearrangement. Here we introduce experimental evidence to the effect that particle rearrangement is a spatially heterogeneous phenomenon, which occurs in the form of a phase transformation between two configurational phases of the granular aggregate. We then show that the energy landscape associated with particle rearrangement is consistent with our interpretation of the experimental results. Besides affording insight into the physics of the granular state, our conclusions are relevant to many engineering processes and natural phenomena.Comment: 7 pages, 3 figure
    • …
    corecore