87 research outputs found

    Observation of Hybrid Soliton Vortex-Ring Structures in Bose-Einstein Condensates

    Full text link
    We present the experimental discovery of compound structures comprising solitons and vortex rings in Bose-Einstein condensates (BECs). We examine both their creation via soliton-vortex collisions and their subsequent development, which is largely governed by the dynamics of interacting vortex rings. A theoretical model in three-dimensional (3D) cylindrical symmetry is also presented.Comment: 5 pages, 4 figures; submitted to PR

    Non-Additive Interactions Unlock Small-Particle Mobility in Binary Colloidal Monolayers

    Full text link
    We examine the organization and dynamics of binary colloidal monolayers composed of micron-scale silica particles interspersed with smaller-diameter silica particles that serve as minority component impurities. These binary monolayers are prepared at the surface of ionic liquid droplets over a range of size ratios (σ=0.16−0.66\sigma=0.16-0.66) and are studied with low-dose minimally perturbative scanning electron microscopy (SEM). The high resolution of SEM imaging provides direct tracking of all particle coordinates over time, enabling a complete description of the microscopic state. In these bidisperse size mixtures, particle interactions are non-additive because interfacial pinning to the droplet surface causes the equators of differently sized particles to lie in separate planes. By varying the size ratio we control the extent of non-additivity in order to achieve phase behavior inaccessible to strictly 2D systems. Across the range of size ratios we tune the system from a mobile small-particle phase (σ<0.24\sigma<0.24), to an interstitial solid (0.240.330.240.33). These distinct phase regimes are classified through measurements of hexagonal ordering of the large-particle host lattice and the lattice's capacity for small-particle transport. Altogether, we explain these structural and dynamic trends by considering the combined influence of interparticle interactions and the colloidal packing geometry. Our measurements are reproduced in molecular dynamics simulations of 2D non-additive hard disks, suggesting an efficient method for describing confined systems with reduced dimensionality representations.Comment: 12 pages, 7 figures, also see supplementary ancillary fil

    Imaging material functionality through 3D nanoscale tracking of energy flow

    Full text link
    The ability of energy carriers to move between atoms and molecules underlies biochemical and material function. Understanding and controlling energy flow, however, requires observing it on ultrasmall and ultrafast spatiotemporal scales, where energetic and structural roadblocks dictate the fate of energy carriers. Here we developed a non-invasive optical scheme that leverages non-resonant interferometric scattering to track tiny changes in material polarizability created by energy carriers. We thus map evolving energy carrier distributions in four dimensions of spacetime with few-nanometer lateral precision and directly correlate to material morphology. We visualize exciton, charge, and heat transport in polyacene, silicon and perovskite semiconductors and elucidate how disorder affects energy flow in 3D. For example, we show that morphological boundaries in polycrystalline metal halide perovskites possess lateral- and depth-dependent resistivities, blocking lateral transport for surface but not bulk carriers. We furthermore reveal strategies to interpret energy transport in disordered environments that will direct the design of defect-tolerant materials for the semiconductor industry of tomorrow

    Photoinduced phase separation in the lead halides is a polaronic effect

    Full text link
    We present a perspective on recent observations of the photoinduced phase separation of halides in multi-component lead-halide perovskites. The spontaneous phase separation of an initial homogeneous solid solution under steady-state illumination conditions is found experimentally to be reversible, stochastic, weakly dependent on morphology, yet strongly dependent on composition and thermodynamic state. Regions enriched in a specific halide species that form upon phase separation are self-limiting in size, pinned to specific compositions, and grow in number in proportion to the steady-state carrier concentration until saturation. These empirical observations of robustness rule out explanations based on specific defect structures and point to the local modulation of an existing miscibility phase transition in the presence of excess charge carriers. A model for rationalizing existing observations based on the coupling between composition, strain and charge density fluctuations through the formation of polarons is reviewed.Comment: Light edits for clarit

    Charging-driven coarsening and melting of a colloidal nanoparticle monolayer at an ionic liquid-vacuum interface

    Full text link
    We induce and investigate the coarsening and melting dynamics of an initially static nanoparticle colloidal monolayer at an ionic liquid-vacuum interface, driven by a focused, scanning electron beam. Coarsening occurs through grain interface migration and larger-scale motions such as grain rotations, often facilitated by sliding dislocations. The progressive decrease in area fraction that drives melting of the monolayer is explained using an electrowetting model whereby particles at the interface are solvated once their accumulating charge recruits sufficient counterions to subsume the particle. Subject to stochastic particle removal from the monolayer, melting is recapitulated in simulations with a Lennard-Jones potential. This new driving mechanism for colloidal systems, whose dynamical timescales we show can be controlled with the accelerating voltage, opens the possibility to manipulate particle interactions dynamically without need to vary particle intrinsic properties or surface treatments. Furthermore, the decrease in particle size availed by electron imaging presents opportunities to observe force and time scales in a lesser-explored regime intermediate between typical colloidal and molecular systems.Comment: 14 pages, 6 figures, also see supplementary ancilliary fil

    Detecting, distinguishing, and spatiotemporally tracking photogenerated charge and heat at the nanoscale

    Get PDF
    Since dissipative processes are ubiquitous in semiconductors, characterizing how electronic and thermal energy transduce and transport at the nanoscale is vital for understanding and leveraging their fundamental properties. For example, in low-dimensional transition metal dichalcogenides (TMDCs), excess heat generation upon photoexcitation is difficult to avoid since even with modest injected exciton densities, exciton-exciton annihilation still occurs. Both heat and photoexcited electronic species imprint transient changes in the optical response of a semiconductor, yet the unique signatures of each are difficult to disentangle in typical spectra due to overlapping resonances. In response, we employ stroboscopic optical scattering microscopy (stroboSCAT) to simultaneously map both heat and exciton populations in few-layer \ch{MoS2} on relevant nanometer and picosecond length- and time scales and with 100-mK temperature sensitivity. We discern excitonic contributions to the signal from heat by combining observations close to and far from exciton resonances, characterizing photoinduced dynamics for each. Our approach is general and can be applied to any electronic material, including thermoelectrics, where heat and electronic observables spatially interplay, and lays the groundwork for direct and quantitative discernment of different types of coexisting energy without recourse to complex models or underlying assumptions.Comment: 22 pages, 4 figures, SI included as ancilliary fil

    Operando Label-free Optical Imaging of Solution-Phase Ion Transport and Electrochemistry

    Get PDF
    Ion transport is a fundamental process in many physical, chemical, and biological phenomena, and especially in electrochemical energy conversion and storage. Despite its immense importance, demonstrations of label-free, spatially and temporally resolved ion imaging in the solution phase under operando conditions are not widespread. Here we spatiotemporally map ion concentration gradient evolution in solution and yield ion transport parameters by refining interferometric reflection microscopy, obviating the need for absorptive or fluorescent labels. As an example, we use an electrochemical cell with planar electrodes to drive concentration gradients in a ferricyanide-based aqueous redox electrolyte, and we observe the lateral spatiotemporal evolution of ions via concentration-dependent changes to the refractive index. Analysis of an evolving spatiotemporal ion distribution directly yields the diffusivity of the redox-active species. The simplicity of this approach makes it amenable to probing local ion transport behavior in a wide range of electrochemical, bioelectronic, and electrophysiological systems.Comment: includes supporting informatio
    • …
    corecore