22 research outputs found

    Aerosol indirect effects

    Get PDF
    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (tau a) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. cloud droplet number concentration (N d) compares relatively well to the satellite data at least over the ocean. The relationship between (tau a) and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and tau a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–tau a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between tau a and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - tau a relationship show a strong positive correlation between tau a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of tau a, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic tau a and satellite-retrieved Nd–tau a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2

    Ocean Biogeochemistry in GFDL’s Earth System Model 4.1 and its Response to Increasing Atmospheric CO2

    Get PDF
    This contribution describes the ocean biogeochemical component of the Geophysical Fluid Dynamics Laboratory's Earth System Model 4.1 (GFDL‐ESM4.1), assesses GFDL‐ESM4.1's capacity to capture observed ocean biogeochemical patterns, and documents its response to increasing atmospheric CO2. Notable differences relative to the previous generation ofGFDL ESM's include enhanced resolution of plankton food web dynamics, refined particle remineralization, and a larger number of exchanges of nutrients across Earth system components. During model spin‐up, the carbon drift rapidly fell below the 10 Pg C per century equilibration criterion established by the Coupled Climate‐Carbon Cycle Model Intercomparison Project (C4MIP). Simulations robustly captured large‐scale observed nutrient distributions, plankton dynamics, and characteristics of the biological pump. The model overexpressed phosphate limitation and open ocean hypoxia in some areas but still yielded realistic surface and deep carbon system properties, including cumulative carbon uptake since preindustrial times and over the last decades that is consistent with observation‐based estimates. The model's response to the direct and radiative effects of a 200% atmospheric CO2 increase from preindustrial conditions (i.e., years 101–120 of a 1% CO2 yr−1 simulation) included (a) a weakened, shoaling organic carbon pump leading to a 38% reduction in the sinking flux at 2,000 m; (b) a two‐thirds reduction in the calcium carbonate pump that nonetheless generated only weak calcite compensation on century time‐scales; and, in contrast to previous GFDL ESMs, (c) a moderate reduction in global net primary production that was amplified at higher trophic levels. We conclude with a discussion of model limitations and priority developments
    corecore