781 research outputs found

    Two-dimensional imaging of the spin-orbit effective magnetic field

    Full text link
    We report on spatially resolved measurements of the spin-orbit effective magnetic field in a GaAs/InGaAs quantum-well. Biased gate electrodes lead to an electric-field distribution in which the quantum-well electrons move according to the local orientation and magnitude of the electric field. This motion induces Rashba and Dresselhaus effective magnetic fields. The projection of the sum of these fields onto an external magnetic field is monitored locally by measuring the electron spin-precession frequency using time-resolved Faraday rotation. A comparison with simulations shows good agreement with the experimental data.Comment: 6 pages, 4 figure

    Naval Target Classification by Fusion of Multiple Imaging Sensors Based on the Confusion Matrix

    Get PDF
    This paper presents an algorithm for the classification of targets based on the fusion of the class information provided by different imaging sensors. The outputs of the different sensors are combined to obtain an accurate estimate of the target class. The performance of each imaging sensor is modelled by means of its confusion matrix (CM), whose elements are the conditional error probabilities in the classification and the conditional correct classification probabilities. These probabilities are used by each sensor to make a decision on the target class. Then, a final decision on the class is made using a suitable fusion rule in order to combine the local decisions provided by the sensors. The overall performance of the classification process is evaluated by means of the "fused" confusion matrix, i.e. the CM pertinent to the final decision on the target class. Two fusion rules are considered: a majority voting (MV) rule and a maximum likelihood (ML) rule. A case study is then presented, where the developed algorithm is applied to three imaging sensors located on a generic air platform: a video camera, an infrared camera (IR), and a spotlight Synthetic Aperture Radar (SAR)

    photochemical performance of carpobrotus edulis in response to various substrate salt concentrations

    Get PDF
    Abstract Substrate salinity is one of the main abiotic factors limiting plant establishment, growth and distribution in coastal habitats. Nevertheless, few studies have investigated the interaction between salt concentration and duration of exposure on the physiology and growth of Carpobrotus edulis, an important invasive plant species growing in coastal dune habitats. In this study, four salinity treatment cycles of different length (three, six, twelve and twenty-four days) at salinity of 0 M, 0.1 M, 0.2 M and 0.3 M were imposed. A significant response in plant growth was elicited after 24 days of treatment. The main shoot length (MSL) and stem biomass (SBMS) increased by 11% and 4%, respectively at 0.1 M and by 25% and 6% at 0.2 M compared with the control. At 0.3 M MSL did not significantly differ from the control while SBMS was 18% lower. Moreover, C. edulis showed a high photoprotection mechanism efficiency resulting in a high carotenoid to chlorophyll ratio increase which was two, three and four times higher than the control at 0.1 M, 0.2 M and 0.3 M, respectively. Photochemically, the quantum yield of photosynthesis (ΦPSII) was 17%, 50% and 52% lower than the control at 0.1 M, 0.2 M and 0.3 M. The ΦPSII decrease was associated with a low leaf nitrogen content (NL) decrease (16%, 21% lower than the control at 0.1 M and 0.2 M, respectively). By contrast, NL had the highest decrease (41% lower than the control) at 0.3 M, which constrains the growth capacity. Overall, C. edulis was able to modulate its response to salinity. The salt stimulated shoot elongation at low or moderate salt concentrations could confer a competitive advantage making C. edulis even more efficient in establishing within the areas which it colonizes. Since the expansion of C. edulis may be enhanced by the forecasted increase in soil salinity, it will be of paramount importance to apply effective management practices in areas invaded by C. edulis to limit its expansion and preserve the native plant biodiversity

    Decomposition-based mission planning for fixed-wing UAVs surveying in wind

    Get PDF
    This paper presents a new method for planning fixed-wing aerial survey paths that ensures efficient image coverage of a large complex agricultural field in the presence of wind. By decomposing any complex polygonal field into multiple convex polygons, the traditional back-and-forth boustrophedon paths can be used to ensure coverage of these decomposed regions. To decompose a complex field in an efficient and fast manner, a top-down recursive greedy approach is used to traverse the search space in order to minimise flight time of the survey. This optimisation can be computed fast enough for use in the field. As wind can severely affect flight time, it is included in the flight time calculation in a systematic way using a verified cost function that offer greatly reduced survey times in wind. Other improved cost functions have been developed to take into account real world problems, e.g. No Fly Zones, in addition to flight time. A number of real surveys are performed in order to show the flight time in wind model is accurate, to make further comparisons to previous techniques and to show that the proposed method works in real-world conditions providing total image coverage. A number of missions are generated and flown for real complex agricultural fields. In addition to this, the wind field around a survey area is measured from a multi-rotor carrying an ultrasonic wind speed sensor. This shows that the assumption of steady uniform wind holds true for the small areas and time scales of a Unmanned Aerial Vehicle (UAV) aerial survey.</div

    Tunable few electron quantum dots in InAs nanowires

    Full text link
    Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure

    Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers

    Get PDF
    One of the most application-relevant milestones that remain to be achieved in the field of passively mode-locked surface-emitting semiconductor lasers is the integration of the semiconductor absorber into the gain structure, enabling the realization of ultra-compact high-repetition-rate laser devices suitable for wafer-scale integration. We have recently succeeded in fabricating the key element in this concept, a quantum-dot-based saturable absorber with a very low saturation fluence, which for the first time allows stable mode locking of surface-emitting semiconductor lasers with the same mode areas on gain and absorber. Experimental results at high repetition rates of up to 30GHz are show

    Individual scatterers as microscopic origin of equilibration between spin- polarized edge channels in the quantum Hall regime

    Full text link
    The equilibration length between spin-polarized edge states in the Quantum Hall regime is measured as a function of a gate voltage applied to an electrode on top of the edge channels. Reproducible fluctuations in the coupling are observed and interpreted as a mesoscopic fingerprint of single spin-flip scatterers which are turned on and off. A model to analyze macroscopic edge state coupling in terms of individual scatterers is developed, and characteristic values for these scatterers in our samples are extracted. For all samples investigated, the distance between spin-flip scatterers lies between the Drude and the quantum scattering length.Comment: 4 pages, 2 figure
    corecore