32 research outputs found

    Lateralization (handedness) in Magellanic penguins

    Get PDF
    Lateralization, or asymmetry in form and/or function, is found in many animal species. Brain lateralization is considered adaptive for an individual, and often results in “handedness,” “footedness,” or a side preference, manifest in behavior and morphology. We tested for lateralization in several behaviors in a wild population of Magellanic penguins Spheniscus magellanicus breeding at Punta Tombo, Argentina. We found no preferred foot in the population (each penguin observed once) in stepping up onto an obstacle: 53% stepped up with the right foot, 47% with the left foot (n = 300, binomial test p = 0.27). We found mixed evidence for a dominant foot when a penguin extended a foot for thermoregulation, possibly depending on the ambient temperature (each penguin observed once). Penguins extended the right foot twice as often as the left foot (n = 121, p < 0.0005) in 2 years when we concentrated our effort during the heat of the day. In a third year when we observed penguins early and late in the day, there was no preference (n = 232, p = 0.59). Penguins use their flippers for swimming, including searching for and chasing prey. We found morphological evidence of a dominant flipper in individual adults: 60.5% of sternum keels curved one direction or the other (n = 76 sterna from carcasses), and 11% of penguins had more feather wear on one flipper than the other (n = 1217). Right-flippered and left-flippered penguins were equally likely in both samples (keels: p = 0.88, feather wear: p = 0.26), indicating individual but not population lateralization. In fights, aggressive penguins used their left eyes preferentially, consistent with the right side of the brain controlling aggression. Penguins that recently fought (each penguin observed once) were twice as likely to have blood only on the right side of the face (69%) as only on the left side (31%, n = 175, p < 0.001). The proportion of penguins with blood only on the right side increased with the amount of blood. In most fights, the more aggressive penguin used its left eye and attacked the other penguin’s right side. Lateralization depended on the behavior tested and, in thermoregulation, likely on the temperature. We found no lateralization or mixed results in the population of Magellanic penguins in three individual behaviors, stepping up, swimming, and thermoregulation. We found lateralization in the population in the social behavior fighting

    Long-term change and stability in the California Current System: lessons from CalCOFI and other long-term data sets. Deep-Sea Res.

    No full text
    Abstract The California Current System (CCS) is a highly variable system, both spatially and temporally, that is strongly affected by low-frequency climatic fluctuations. This paper reviews evidence for long-term (decadal-scale) change in the physics and biology of the CCS over the last 50-100 years, as well as evidence for stability in planktonic community structure and long-term persistence of populations. Increases in water temperature, thermocline depth and stratification in the CCS have been accompanied by changes in populations of kelp, diatoms, foraminifera, radiolarians, intertidal invertebrates, zooplankton, fish and seabirds. However, there is also evidence for stability in assemblages of larval fish, calanoid copepods and radiolarians. Statistical averaging (the portfolio effect) may explain some aspects of stability in assemblages. Advection of planktonic populations may account for rapid recovery of biomass and dominance structure following perturbations such as strong El NinËśo events. Planktonic populations in the CCS may be adapted to largescale biotic and abiotic variability, through a combination of advection of populations and life history traits. Several lessons may be learned from the California Cooperative Oceanic Fisheries Investigations and other long-term data sets: (1) long time series are needed to understand the dynamics of the ecosystem; (2) life histories are important determinants of species responses to environmental forcing, even in the plankton; and (3) the CCS is simultaneously variable and stable, and these properties are not necessarily in conflict.

    Climate change increases reproductive failure in Magellanic penguins.

    Get PDF
    Climate change is causing more frequent and intense storms, and climate models predict this trend will continue, potentially affecting wildlife populations. Since 1960 the number of days with >20 mm of rain increased near Punta Tombo, Argentina. Between 1983 and 2010 we followed 3496 known-age Magellanic penguin (Spheniscus magellanicus) chicks at Punta Tombo to determine how weather impacted their survival. In two years, rain was the most common cause of death killing 50% and 43% of chicks. In 26 years starvation killed the most chicks. Starvation and predation were present in all years. Chicks died in storms in 13 of 28 years and in 16 of 233 storms. Storm mortality was additive; there was no relationship between the number of chicks killed in storms and the numbers that starved (P = 0.75) or that were eaten (P = 0.39). However, when more chicks died in storms, fewer chicks fledged (P = 0.05, R(2) = 0.14). More chicks died when rainfall was higher and air temperature lower. Most chicks died from storms when they were 9-23 days old; the oldest chick killed in a storm was 41 days old. Storms with heavier rainfall killed older chicks as well as more chicks. Chicks up to 70 days old were killed by heat. Burrow nests mitigated storm mortality (N = 1063). The age span of chicks in the colony at any given time increased because the synchrony of egg laying decreased since 1983, lengthening the time when chicks are vulnerable to storms. Climate change that increases the frequency and intensity of storms results in more reproductive failure of Magellanic penguins, a pattern likely to apply to many species breeding in the region. Climate variability has already lowered reproductive success of Magellanic penguins and is likely undermining the resilience of many other species

    Storm mortality (observed and predicted) in Magellanic penguin chicks, by nest type, age, and rainfall.

    No full text
    <p>Mortality increased with higher rainfall, but depended nonlinearly on chick age. <i>N</i> = 28 years, 2482 chicks alive during a storm; 206 died of exposure. Top panels: A & C are the observed percentages of chicks that died from age 0 to 55 days for 4 levels of rain. (A) Bush nests: 24 of 44 chicks died in 4 storms with >45 mm rain. 59 of 138 chicks died in 4 storms with 40–45 mm rain. 20 of 47 chicks died in 3 storms with 20–25 mm rain. 40 of 215 chicks died in 14 storms with 10–15 mm rain. (C) Burrow nests: 4 of 10 chicks died in 4 storms with >45 mm rain. 7 of 28 chicks died in 4 storms with 40–45 mm rain. 0 of 16 chicks died in 3 storms with 20–25 mm rain. 6 of 60 chicks died in 14 storms with 10–15 mm rain. Bottom panels: B & D are the predicted probabilities of a chick dying in a storm. Probabilities were calculated from the best logistic regression model (lowest AIC) with age, precipitation, and low temperature standardized plus age squared and interactions. Low temperature and its interactions were held constant for these simulations. (B) Bush nests. (D) Burrow nests.</p

    Percentages of Magellanic penguin chicks that died from predation, rain, and heat.

    No full text
    <p>(A) Percentages of chicks by year. Predation (solid line) killed chicks in all years; rain (white bars), and heat (gray bars) killed chicks in some years and were sometimes important causes of death. <i>N</i> = 28 years, 3496 chicks. Percentages do not sum to 100 because other causes of death are not shown. (B) By chick age (days). The number of chicks that died from predation (solid line), rain (white bars), and heat (gray bars) divided by the total number of chicks that reached each age. Each chick was counted in each age until that chick died or disappeared. The sample size decreases with age: for 0 days of age, <i>N</i> = 3496 chicks; for 80 days of age, <i>N</i> = 625 chicks.</p

    Partial regression coefficients and robust standard errors for standardized variables in the best model (lowest AIC; Table 1) for the probability that a Magellanic penguin chick died in a storm at Punta Tombo, Argentina, 1983–2010.

    No full text
    <p>We used multiple logistic regression, grouping on nest, with robust standard errors on 2482 chicks in 590 nests with 233 storms. Age = chick age (days) on date of storm (chicks that did not die in a storm were randomly assigned to a storm), Low = low temperature, * indicates interaction terms. Variables were standardized so the coefficient magnitudes indicate their relative strengths.</p
    corecore