7 research outputs found

    Increased Risky Choice and Reduced CHRNB2 Expression in Adult Male Rats Exposed to Nicotine Vapor

    No full text
    While the cognitive enhancing effects of nicotine use have been well documented, it has also been shown to impair decision making. The goal of this study was to determine if exposure to nicotine vapor increases risky decision making. The study also aims to investigate possible long-term effects of nicotine vapor exposure on the expression of genes coding for cholinergic and dopaminergic receptors in brain. Thirty-two adult male Sprague Dawley rats were exposed to 24 mg/mL nicotine vapor or vehicle control, immediately followed by testing in the probability discounting task for 10 consecutive days. Fifty-four days after the 10-day vapor exposure, animals were sacrificed and expression of genes coding for the α4 and β2 cholinergic receptor subunits, and dopamine D1 and D2 receptors, were analyzed using RT-PCR. Exposure to nicotine vapor caused an immediate and transient increase in risky choice. Analyses of gene expression identified significant reductions in CHRNB2 and DRD1 in the nucleus accumbens core and CHRNB2 and DRD2 in the medial prefrontal cortex of rats previously exposed to nicotine vapor, relative to vehicle controls. Results provide data on the negative cognitive effects of nicotine vapor exposure and identify cholinergic and dopaminergic mechanisms that may affected with repeated use

    Increased Risky Choice and Reduced CHRNB2 Expression in Adult Male Rats Exposed to Nicotine Vapor

    No full text
    While the cognitive enhancing effects of nicotine use have been well documented, it has also been shown to impair decision making. The goal of this study was to determine if exposure to nicotine vapor increases risky decision making. The study also aims to investigate possible longterm effects of nicotine vapor exposure on the expression of genes coding for cholinergic and dopaminergic receptors in brain. Thirty-two adult male Sprague Dawley rats were exposed to 24 mg/mL nicotine vapor or vehicle control, immediately followed by testing in the probability discounting task for 10 consecutive days. Fifty-four days after the 10-day vapor exposure, animals were sacrificed and expression of genes coding for the α4 and β2 cholinergic receptor subunits, and dopamine D1 and D2 receptors, were analyzed using RT-PCR. Exposure to nicotine vapor caused an immediate and transient increase in risky choice. Analyses of gene expression identified significant reductions in CHRNB2 and DRD1 in the nucleus accumbens core and CHRNB2 and DRD2 in the medial prefrontal cortex of rats previously exposed to nicotine vapor, relative to vehicle controls. Results provide data on the negative cognitive effects of nicotine vapor exposure and identify cholinergic and dopaminergic mechanisms that may affected with repeated use

    Pervasive chromosomal instability and karyotype order in tumour evolution

    No full text
    Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes(1,2). The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution(1,3,4). Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2(+) breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution

    Pervasive chromosomal instability and karyotype order in tumour evolution

    No full text
    Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.status: publishe

    Superior skin cancer classification by the combination of human and artificial intelligence

    No full text
    Background: In recent studies, convolutional neural networks (CNNs) outperformed dermatologists in distinguishing dermoscopic images of melanoma and nevi. In these studies, dermatologists and artificial intelligence were considered as opponents. However, the combination of classifiers frequently yields superior results, both in machine learning and among humans. In this study, we investigated the potential benefit of combining human and artificial intelligence for skin cancer classification. Methods: Using 11,444 dermoscopic images, which were divided into five diagnostic categories, novel deep learning techniques were used to train a single CNN. Then, both 112 dermatologists of 13 German university hospitals and the trained CNN independently classified a set of 300 biopsy-verified skin lesions into those five classes. Taking into account the certainty of the decisions, the two independently determined diagnoses were combined to a new classifier with the help of a gradient boosting method. The primary end-point of the study was the correct classification of the images into five designated categories, whereas the secondary end-point was the correct classification of lesions as either benign or malignant (binary classification). Findings: Regarding the multiclass task, the combination of man and machine achieved an accuracy of 82.95%. This was 1.36% higher than the best of the two individual classifiers (81.59% achieved by the CNN). Owing to the class imbalance in the binary problem, sensitivity, but not accuracy, was examined and demonstrated to be superior (89%) to the best individual classifier (CNN with 86.1%). The specificity in the combined classifier decreased from 89.2% to 84%. However, at an equal sensitivity of 89%, the CNN achieved a specificity of only 81.5% Interpretation: Our findings indicate that the combination of human and artificial intelligence achieves superior results over the independent results of both of these systems. (C) 2019 The Author(s). Published by Elsevier Ltd

    Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks

    No full text
    Background: Recently, convolutional neural networks (CNNs) systematically outperformed dermatologists in distinguishing dermoscopic melanoma and nevi images. However, such a binary classification does not reflect the clinical reality of skin cancer screenings in which multiple diagnoses need to be taken into account. Methods: Using 11,444 dermoscopic images, which covered dermatologic diagnoses comprising the majority of commonly pigmented skin lesions commonly faced in skin cancer screenings, a CNN was trained through novel deep learning techniques. A test set of 300 biopsy-verified images was used to compare the classifier's performance with that of 112 dermatologists from 13 German university hospitals. The primary end-point was the correct classification of the different lesions into benign and malignant. The secondary end-point was the correct classification of the images into one of the five diagnostic categories. Findings: Sensitivity and specificity of dermatologists for the primary end-point were 74.4% (95% confidence interval [CI]: 67.0-81.8%) and 59.8% (95% CI: 49.8-69.8%), respectively. At equal sensitivity, the algorithm achieved a specificity of 91.3% (95% CI: 85.5-97.1%). For the secondary end-point, the mean sensitivity and specificity of the dermatologists were at 56.5% (95% CI: 42.8-70.2%) and 89.2% (95% CI: 85.0-93.3%), respectively. At equal sensitivity, the algorithm achieved a specificity of 98.8%. Two-sided McNemar tests revealed significance for the primary end-point (p < 0.001). For the secondary end-point, outperformance (p < 0.001) was achieved except for basal cell carcinoma (on-par performance). Interpretation: Our findings show that automated classification of dermoscopic melanoma and nevi images is extendable to a multiclass classification problem, thus better reflecting clinical differential diagnoses, while still outperforming dermatologists at a significant level (p < 0.001). (C) 2019 The Author(s). Published by Elsevier Ltd

    Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks

    No full text
    corecore