24 research outputs found

    Novel and Recurrent PNPLA1 Mutations in Spanish Patients with Autosomal Recessive Congenital Ichthyosis; Evidence of a Founder Effect

    Get PDF
    Autosomal recessive congenital ichthyosis (ARCI) is a group of rare non-syndrome diseases that affect cornification. PNPLA1 is one of the 12 related genes identified so far. Mutation screening of this gene has resulted in the identification of 13 individuals, from 10 families, who carried 7 different PNPLA1 mutations. These mutations included 2 missense, 2 frame­shift and 3 nonsense, 3 of them being novel. One of the identified variants, c.417_418delinsTC, was highly prevalent, as it was found in 6 out of 10 (60%) of our ARCI families with PNPLA1 mutations. Clinical manifestations varied significantly among patients, but altered sweating; erythema, palmar hyperlinearity and small whitish scales in flexor-extensor and facial areas were common symptoms. Haplotype analyses of c.417_418delinsTC carriers confirmed the existence of a common ancestor. This study expands the spectrum of the PNPLA1 disease, which causes variants and demonstrates that the c.417_418delinsTC mutation has founder effects in the Spanish population.This work was partially supported by Ramón Areces Foundation project (Rare Diseases 2013-056); by Spanish Instituto de Salud Carlos III (ISCIII) (INT15/00070, INT16/00154, INT17/00133) and by Xunta de Galicia (IN607B). UE was supported by a predoctoral fellowship from Xunta de GaliciaS

    A novel ABCA12 pathologic variant identified in an Ecuadorian harlequin ichthyosis patient: A step forward in genotype‐phenotype correlations

    Get PDF
    Autosomal recessive congenital ichthyoses (ARCI) have been associated with different phenotypes including: harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). While pathogenic variants in all ARCI genes are associated with LI and CIE phenotypes, the unique gene associated with HI is ABCA12. In HI, the most severe ARCI form, pathogenic variants in both ABCA12 gene alleles usually have a severe impact on protein function. The presence of at least one non-truncating variant frequently causes a less severe congenital ichthyosis phenotype (LI and CIE). METHODS: We report the case of a 4-year-old Ecuadorian boy with a severe skin disease. Genetic diagnosis was performed by NGS. In silico predictions were performed using Alamut software v2.11. A review of the literature was carried out to identify all patients carrying ABCA12 splice-site and missense variants, and to explore their genotype-phenotype correlations. RESULTS: Genetic testing revealed a nonsense substitution, p.(Arg2204*), and a new missense variant, p.(Val1927Leu), in the ABCA12 gene. After performing in silico analysis and a comprehensive review of the literature, we conclude that p.(Val1927Leu) affects a well conserved residue which could either disturb the protein function or alter the splicing process, both alternatives could explain the severe phenotype of our patient. CONCLUSION: This case expands the spectrum of ABCA12 reported disease-causing variants which is important to unravel genotype-phenotype correlations and highlights the importance of missense variants in the development of HI. © 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.Fundación Ramón ArecesInstituto de Salud Carlos IIIXunta de GaliciaUniversidad Espíritu Santo-Ecuado

    Novel CYP4F22 mutations associated with autosomal recessive congenital ichthyosis (ARCI). Study of the CYP4F22 c.1303C>T founder mutation

    Get PDF
    Mutations in CYP4F22 cause autosomal recessive congenital ichthyosis (ARCI). However, less than 10% of all ARCI patients carry a mutation in CYP4F22. In order to identify the molecular basis of ARCI among our patients (a cohort of ninety-two Spanish individuals) we performed a mutational analysis using direct Sanger sequencing in combination with a multigene targeted NGS panel. From these, eight ARCI families (three of them with Moroccan origin) were found to carry five different CYP4F22 mutations, of which two were novel. Computational analysis showed that the mutations found were present in highly conserved residues of the protein and may affect its structure and function. Seven of the eight families were carriers of a highly recurrent CYP4F22 variant, c.1303C>T; p.(His435Tyr). A 12Mb haplotype was reconstructed in all c.1303C>T carriers by genotyping ten microsatellite markers flanking the CYP4F22 gene. A prevalent 2.52Mb haplotype was observed among Spanish carrier patients suggesting a recent common ancestor. A smaller core haplotype of 1.2Mb was shared by Spanish and Moroccan families. Different approaches were applied to estimate the time to the most recent common ancestor (TMRCA) of carrier patients with Spanish origin. The age of the mutation was calculated by using DMLE and BDMC2. The algorithms estimated that the c.1303C>T variant arose approximately 2925 to 4925 years ago, while Spanish carrier families derived from a common ancestor who lived in the XIII century. The present study reports five CYP4F22 mutations, two of them novel, increasing the number of CYP4F22 mutations currently listed. Additionally, our results suggest that the recurrent c.1303C>T change has a founder effect in Spanish population and c.1303C>T carrier families originated from a single ancestor with probable African ancestry

    Biogeographical origin and timing of the founder ichthyosis TGM1 c.1187G > A mutation in an isolated Ecuadorian population

    Get PDF
    An unusually high frequency of the lamellar ichthyosis TGM1 mutation, c.1187G > A, has been observed in the Ecuadorian province of Manabi. Recently, the same mutation has been detected in a Galician patient (Northwest of Spain). By analyzing patterns of genetic variation around this mutation in Ecuadorian patients and population matched controls, we were able to estimate the age of c.1187G > A and the time to their most recent common ancestor (TMRCA) of c.1187G > A Ecuadorian carriers. While the estimated mutation age is 41 generations ago (~1,025 years ago [ya]), the TMRCA of Ecuadorian c.1187G > A carrier haplotypes dates to just 17 generations (~425 ya). Probabilistic-based inferences of local ancestry allowed us to infer a most likely European origin of a few (16% to 30%) Ecuadorian haplotypes carrying this mutation. In addition, inferences on demographic historical changes based on c.1187G > A Ecuadorian carrier haplotypes estimated an exponential population growth starting ~20 generations, compatible with a recent founder effect occurring in Manabi. Two main hypotheses can be considered for the origin of c.1187G > A: (i) the mutation could have arisen in Spain >1,000 ya (being Galicia the possible homeland) and then carried to Ecuador by Spaniards in colonial times ~400 ya, and (ii) two independent mutational events originated this mutation in Ecuador and Galicia. The geographic and cultural characteristics of Manabi could have favored a founder effect that explains the high prevalence of TGM1 c.1187G > A in this region

    Comment on

    No full text
    corecore