151 research outputs found

    Acute-on-chronic liver failure: A new syndrome that will re-classify cirrhosis.

    Get PDF
    Acute-on-chronic liver failure (ACLF) is a recently recognized syndrome characterized by acute decompensation (AD) of cirrhosis and organ/system failure(s) (organ failure: liver, kidney, brain, coagulation, circulation and/or respiration) and extremely poor survival (28-day mortality rate 30-40%). ACLF occurs in relatively young patients. It is especially frequent in alcoholic- and untreated hepatitis B associated-cirrhosis, in addition it is related to bacterial infections and active alcoholism, although in 40% of cases no precipitating event can be identified. It may develop at any time during the course of the disease in the patient (from compensated to long-standing cirrhosis). The development of ACLF occurs in the setting of a systemic inflammation, the severity of which correlates with the number of organ failures and mortality. Systemic inflammation may cause ACLF through complex mechanisms including an exaggerated inflammatory response and systemic oxidative stress to pathogen- or danger/damage-associated molecular patterns (immunopathology) and/or alteration of tissue homeostasis to inflammation caused either by the pathogen itself or through a dysfunction of tissue tolerance. A scoring system composed of three scores (CLIF-C OFs, CLIF-C AD, and CLIF-C ACLFs) specifically designed for patients with AD, with and without ACLF, allows a step-wise algorithm for a rational indication of therapy. The management of ACLF should be carried out in enhanced or intensive care units. Current therapeutic measures comprise the treatment for associated complications, organ failures support and liver transplantation

    Statins: Old drugs as new therapy for liver diseases?

    Get PDF
    In addition to lowering cholesterol levels, statins have pleiotropic effects, particularly anti-inflammatory, antiangiogenic, and antifibrotic, that may be beneficial in some chronic inflammatory conditions. Statins have only recently been investigated as a potential treatment option in chronic liver diseases because of concerns related to their safety in patients with impaired liver function. A number of experimental studies in animal models of liver diseases have shown that statins decrease hepatic inflammation, fibrogenesis and portal pressure. In addition, retrospective cohort studies in large populations of patients with cirrhosis and pre-cirrhotic conditions have shown that treatment with statins, with the purpose of decreasing high cholesterol levels, was associated with a reduced risk of disease progression, hepatic decompensation, hepatocellular carcinoma development, and death. These beneficial effects persisted after adjustment for disease severity and other potential confounders. Finally, a few randomised controlled trials have shown that treatment with simvastatin decreases portal pressure (two studies) and mortality (one study). Statin treatment was generally well tolerated but a few patients developed severe side effects, particularly rhabdomyolysis. Despite these promising beneficial effects, further randomised controlled trials in large series of patients with hard clinical endpoints should be performed before statins can be recommended for use in clinical practice

    Statins: Old drugs as new therapy for liver diseases

    Get PDF
    In addition to lowering cholesterol levels, statins have pleiotropic effects, particularly anti-inflammatory, antiangiogenic, and antifibrotic, that may be beneficial in some chronic inflammatory conditions. Statins have only recently been investigated as a potential treatment option in chronic liver diseases because of concerns related to their safety in patients with impaired liver function. A number of experimental studies in animal models of liver diseases have shown that statins decrease hepatic inflammation, fibrogenesis and portal pressure. In addition, retrospective cohort studies in large populations of patients with cirrhosis and pre-cirrhotic conditions have shown that treatment with statins, with the purpose of decreasing high cholesterol levels, was associated with a reduced risk of disease progression, hepatic decompensation, hepatocellular carcinoma development, and death. These beneficial effects persisted after adjustment for disease severity and other potential confounders. Finally, a few randomised controlled trials have shown that treatment with simvastatin decreases portal pressure (two studies) and mortality (one study). Statin treatment was generally well tolerated but a few patients developed severe side effects, particularly rhabdomyolysis. Despite these promising beneficial effects, further randomised controlled trials in large series of patients with hard clinical endpoints should be performed before statins can be recommended for use in clinical practice

    Endpoints and design of clinical trials in patients with decompensated cirrhosis: Position paper of the LiverHope Consortium

    Get PDF
    Management of decompensated cirrhosis is currently geared towards the treatment of complications once they occur. To date there is no established disease-modifying therapy aimed at halting progression of the disease and preventing the development of complications that can be used for patients with decompensated cirrhosis. The design of clinical trials to investigate new therapies for patients with decompensated cirrhosis is complex. The population of patients with decompensated cirrhosis is heterogeneous (i.e., different etiologies, comorbidities, severity of the disease), leading to the inclusion of diverse populations in clinical trials. In addition, primary endpoints selected for trials that include patients with decompensated cirrhosis are not homogeneous and at times may not be appropriate endpoints. This leads to difficulties in comparing of results obtained from different trials. Against this background, the LiverHope Consortium organized a meeting of experts with the goal of making recommendations for the design of clinical trials and defining appropriate endpoints both for trials aimed at modifying the natural history and preventing progression of decompensated cirrhosis and trials aimed at investigating new therapies for the management of each complication of cirrhosis

    Safety of two different doses of simvastatin plus rifaximin in decompensated cirrhosis (LIVERHOPE-SAFETY): a randomised, double-blind, placebo-controlled, phase 2 trial

    Get PDF
    BACKGROUND: Statins have beneficial effects on intrahepatic circulation and decrease portal hypertension and rifaximin modulates the gut microbiome and might prevent bacterial translocation in patients with cirrhosis. Therefore, this drug combination might be of therapeutic benefit in patients with decompensated cirrhosis. However, there is concern regarding the safety of statins in patients with decompensated cirrhosis. We assessed the safety of two different doses of simvastatin, in combination with rifaximin, in patients with decompensated cirrhosis. // METHODS: We did a double-blind, randomised, placebo-controlled, phase 2 trial in patients with decompensated cirrhosis and moderate-to-severe liver failure from nine university hospitals in six European countries (Italy, France, Holland, Germany, the UK, and Spain). Patients older than 18 years with Child-Pugh class B or C disease were eligible. We randomly assigned patients (1:1:1) to receive either simvastatin 40 mg/day plus rifaximin 1200 mg/day, simvastatin 20 mg/day plus rifaximin 1200 mg/day, or placebo of both medications for 12 weeks. Randomisation was stratified according to Child-Pugh class (B vs C) and restricted using blocks of multiples of three. The primary endpoint was development of liver or muscle toxicity, as defined by changes in liver aminotransferases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]), alkaline phosphastase, and creatine kinase. The study is registered with the European Union Clinical Trials Register, 2016-004499-23, and with ClinicalTrials.gov, NCT03150459. // FINDINGS: The study recruitment period was between July 28, 2017, and Jan 2, 2018. Follow-up finished on March 12, 2018. 50 patients were randomly assigned to simvastatin 40 mg/day plus rifaximin 1200 mg/day (n=18), simvastatin 20 mg/day plus rifaximin 1200 mg/day (n=16), or placebo of both medications (n=16). Six patients (two from each group) were excluded. Therefore, the full analysis set included 44 patients (16 in the simvastatin 40 mg/day plus rifaximin 1200 mg/day group, 14 in the simvastatin 20 mg/day plus rifaximin mg/day group, and 14 in the placebo group). After a safety analyses when the first ten patients completed treatment, treatment was stopped prematurely in the simvastatin 40 mg/day plus rifaximin group due to recommendations by the data safety monitoring board. Patients in the simvastatin 40 mg/day plus rifaximin group showed a significant increase in AST and ALT compared with the placebo group (mean differences between the groups at the end of treatment for AST 130 IU/L [95% CI 54 to 205; p=0·0009] and for ALT 61 IU/L [22 to 100; p=0·0025]. We observed no significant differences at 12 weeks in AST and ALT between the simvastatin 20 mg/day plus rifaximin and placebo group (for AST -14 IU/L [-91 to 64; p=0·728] and for ALT -8 IU/L [-49 to 33; p=0·698]). We observed no significant differences in alkaline phosphatase between the the simvastatin 40 mg/day plus rifaximin or the simvastatin 20 mg/day plus rifaximin groups compared with placebo. Patients in the simvastatin 40 mg/day plus rifaximin group showed an increase in creatine kinase at the end of treatment compared with patients in the placebo group (1009 IU/L [208 to 1809]; p=0·014). We observed no significant changes in creatine kinase in the simvastatin 20 mg/day plus rifaximin group (4·2 IU/L [-804 to 813]; p=0·992). Three (19%) patients in the simvastatin 40 mg/day group developed liver and muscle toxicity consistent with rhabdomyolysis. The number of patients who stopped treatment because of adverse events was significantly higher in the simvastatin 40 mg/day plus rifaximin group (nine [56%] of 16 patients) compared with the other two groups (two [14%] of 14 for both groups; p=0·017). There were no serious unexpected adverse reactions reported during the study. // INTERPRETATION: Treatment with simvastatin 40 mg/day plus rifaximin in patients with decompensated cirrhosis was associated with a significant increase in adverse events requiring treatment withdrawal, particularly rhabdomyolysis, compared with simvastatin 20 mg/day plus rifaximin. We recommend simvastatin 20 mg/day as the dose to be used in studies investigating the role of statins in patients with decompensated cirrhosis. //FUNDING: Horizon 20/20 European programme

    Hospital-Acquired Versus Community-Acquired Acute Kidney Injury in Patients with Cirrhosis: A Prospective Study

    Get PDF
    Introduction: In patients with cirrhosis, differences between acute kidney injury (AKI) at the time of hospital admission (community-acquired) and AKI occurring during hospitalization (hospital-acquired) have not been explored. We aimed to compare patients with hospital-acquired AKI (H-AKI) and community-acquired AKI (C-AKI) in a large, prospective study. Methods: Hospitalized patients with cirrhosis were enrolled (N = 519) and were followed for 90 days after discharge for mortality. The primary outcome was mortality within 90 days; secondary outcomes were the development of de novo chronic kidney disease (CKD)/progression of CKD after 90 days. Cox proportional hazards and logistic regressions were used to determine the independent association of either AKI for primary and secondary outcomes, respectively. Results: H-AKI occurred in 10%, and C-AKI occurred in 25%. In multivariable Cox models adjusting for significant confounders, only patients with C-AKI had a higher risk for mortality adjusting for model for end-stage liver disease-Na: (hazard ratio 1.64, 95% confidence interval [CI] 1.04-2.57, P = 0.033) and adjusting for acute on chronic liver failure: (hazard ratio 2.44, 95% CI 1.63-3.65, P < 0.001). In univariable analysis, community-acquired-AKI, but not hospital-acquired-AKI, was associated with de novo CKD/progression of CKD (odds ratio 2.13, 95% CI 1.09-4.14, P = 0.027), but in multivariable analysis, C-AKI was not independently associated with de novo CKD/progression of CKD. However, when AKI was dichotomized by stage, C-AKI stage 3 was independently associated with de novo CKD/progression of CKD (odds ratio 4.79, 95% CI 1.11-20.57, P = 0.035). Discussion: Compared with H-AKI, C-AKI is associated with increased mortality and de novo CKD/progression of CKD in patients with cirrhosis. Patients with C-AKI may benefit from frequent monitoring after discharge to improve outcomes

    The CLIF Consortium Acute Decompensation score (CLIF-C ADs) for prognosis of hospitalised cirrhotic patients without acute-on-chronic liver failure

    Get PDF
    BACKGROUND & AIMS: Cirrhotic patients with acute decompensation frequently develop acute-on-chronic liver failure (ACLF), which is associated with high mortality rates. Recently, a specific score for these patients has been developed using the CANONIC study database. The aims of this study were to develop and validate the CLIF-C AD score, a specific prognostic score for hospitalised cirrhotic patients with acute decompensation (AD), but without ACLF, and to compare this with the Child-Pugh, MELD, and MELD-Na scores. METHODS: The derivation set included 1016 CANONIC study patients without ACLF. Proportional hazards models considering liver transplantation as a competing risk were used to identify score parameters. Estimated coefficients were used as relative weights to compute the CLIF-C ADs. External validation was performed in 225 cirrhotic AD patients. CLIF-C ADs was also tested for sequential use. RESULTS: Age, serum sodium, white-cell count, creatinine and INR were selected as the best predictors of mortality. The C-index for prediction of mortality was better for CLIF-C ADs compared with Child-Pugh, MELD, and MELD-Nas at predicting 3- and 12-month mortality in the derivation, internal validation and the external dataset. CLIF-C ADs improved in its ability to predict 3-month mortality using data from days 2, 3-7, and 8-15 (C-index: 0.72, 0.75, and 0.77 respectively). CONCLUSIONS: The new CLIF-C ADs is more accurate than other liver scores in predicting prognosis in hospitalised cirrhotic patients without ACLF. CLIF-C ADs therefore may be used to identify a high-risk cohort for intensive management and a low-risk group that may be discharged early

    Population screening for liver fibrosis: towards early diagnosis and intervention for chronic liver diseases

    Get PDF
    Cirrhosis, highly prevalent worldwide, develops after years of hepatic inflammation triggering progressive fibrosis. Currently, the main etiologies of cirrhosis are non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD), although chronic hepatitis B and C infections are still major etiological factors in some areas of the world. Recent studies have shown that liver fibrosis can be assessed with relatively high accuracy non-invasively by serological tests, transient elastography, and radiological methods. These modalities may be utilized for screening for liver fibrosis in at-risk populations. Thus far, a limited number of population-based studies using non-invasive tests in different areas of the world indicate that a significant percentage of subjects without known liver disease (around 5% in general populations and a higher rate -18 to 27%- in populations with risk factors for liver disease) have significant undetected liver fibrosis or established cirrhosis. Larger international studies are required to show the harms and benefits before concluding that screening for liver fibrosis should be applied to populations at risk for chronic liver diseases. Screening for liver fibrosis has the potential for changing the current approach from diagnosing chronic liver diseases late when patients have already developed complications of cirrhosis to diagnosing liver fibrosis in asymptomatic subjects providing the opportunity of preventing disease progression
    corecore